ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfinlem Unicode version

Theorem exmidonfinlem 7194
Description: Lemma for exmidonfin 7195. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Hypothesis
Ref Expression
exmidonfinlem.a  |-  A  =  { { x  e. 
{ (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }
Assertion
Ref Expression
exmidonfinlem  |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
Distinct variable group:    ph, x
Allowed substitution hint:    A( x)

Proof of Theorem exmidonfinlem
Dummy variables  r  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 3617 . . . . . . . . . 10  |-  ( r  e.  { { x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }  ->  (
r  =  { x  e.  { (/) }  |  ph }  \/  r  =  { x  e.  { (/) }  |  -.  ph }
) )
2 exmidonfinlem.a . . . . . . . . . 10  |-  A  =  { { x  e. 
{ (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }
31, 2eleq2s 2272 . . . . . . . . 9  |-  ( r  e.  A  ->  (
r  =  { x  e.  { (/) }  |  ph }  \/  r  =  { x  e.  { (/) }  |  -.  ph }
) )
4 eleq2 2241 . . . . . . . . . . . 12  |-  ( r  =  { x  e. 
{ (/) }  |  ph }  ->  ( s  e.  r  <->  s  e.  {
x  e.  { (/) }  |  ph } ) )
54biimpcd 159 . . . . . . . . . . 11  |-  ( s  e.  r  ->  (
r  =  { x  e.  { (/) }  |  ph }  ->  s  e.  {
x  e.  { (/) }  |  ph } ) )
6 elrabi 2892 . . . . . . . . . . . . . 14  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  s  e.  { (/)
} )
7 velsn 3611 . . . . . . . . . . . . . 14  |-  ( s  e.  { (/) }  <->  s  =  (/) )
86, 7sylib 122 . . . . . . . . . . . . 13  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  s  =  (/) )
9 biidd 172 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  s  ->  ( ph 
<-> 
ph ) )
109elrab 2895 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  { x  e. 
{ (/) }  |  ph } 
<->  ( s  e.  { (/)
}  /\  ph ) )
1110simprbi 275 . . . . . . . . . . . . . . . 16  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  ph )
1211notnotd 630 . . . . . . . . . . . . . . 15  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  -.  -.  ph )
13 0ex 4132 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  _V
1413snm 3714 . . . . . . . . . . . . . . . 16  |-  E. w  w  e.  { (/) }
15 r19.3rmv 3515 . . . . . . . . . . . . . . . 16  |-  ( E. w  w  e.  { (/)
}  ->  ( -.  -.  ph  <->  A. x  e.  { (/)
}  -.  -.  ph ) )
1614, 15ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( -. 
-.  ph  <->  A. x  e.  { (/)
}  -.  -.  ph )
1712, 16sylib 122 . . . . . . . . . . . . . 14  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  A. x  e.  { (/)
}  -.  -.  ph )
18 rabeq0 3454 . . . . . . . . . . . . . 14  |-  ( { x  e.  { (/) }  |  -.  ph }  =  (/)  <->  A. x  e.  { (/)
}  -.  -.  ph )
1917, 18sylibr 134 . . . . . . . . . . . . 13  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  { x  e. 
{ (/) }  |  -.  ph }  =  (/) )
208, 19eqtr4d 2213 . . . . . . . . . . . 12  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  s  =  {
x  e.  { (/) }  |  -.  ph }
)
21 p0ex 4190 . . . . . . . . . . . . . . 15  |-  { (/) }  e.  _V
2221rabex 4149 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) }  |  -.  ph }  e.  _V
2322prid2 3701 . . . . . . . . . . . . 13  |-  { x  e.  { (/) }  |  -.  ph }  e.  { {
x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }
2423, 2eleqtrri 2253 . . . . . . . . . . . 12  |-  { x  e.  { (/) }  |  -.  ph }  e.  A
2520, 24eqeltrdi 2268 . . . . . . . . . . 11  |-  ( s  e.  { x  e. 
{ (/) }  |  ph }  ->  s  e.  A
)
265, 25syl6 33 . . . . . . . . . 10  |-  ( s  e.  r  ->  (
r  =  { x  e.  { (/) }  |  ph }  ->  s  e.  A
) )
27 eleq2 2241 . . . . . . . . . . . 12  |-  ( r  =  { x  e. 
{ (/) }  |  -.  ph }  ->  ( s  e.  r  <->  s  e.  {
x  e.  { (/) }  |  -.  ph }
) )
2827biimpcd 159 . . . . . . . . . . 11  |-  ( s  e.  r  ->  (
r  =  { x  e.  { (/) }  |  -.  ph }  ->  s  e.  { x  e.  { (/) }  |  -.  ph }
) )
29 elrabi 2892 . . . . . . . . . . . . . 14  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  s  e.  {
(/) } )
3029, 7sylib 122 . . . . . . . . . . . . 13  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  s  =  (/) )
31 biidd 172 . . . . . . . . . . . . . . . . 17  |-  ( x  =  s  ->  ( -.  ph  <->  -.  ph ) )
3231elrab 2895 . . . . . . . . . . . . . . . 16  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  <->  ( s  e. 
{ (/) }  /\  -.  ph ) )
3332simprbi 275 . . . . . . . . . . . . . . 15  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  -.  ph )
34 r19.3rmv 3515 . . . . . . . . . . . . . . . 16  |-  ( E. w  w  e.  { (/)
}  ->  ( -.  ph  <->  A. x  e.  { (/) }  -.  ph ) )
3514, 34ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( -. 
ph 
<-> 
A. x  e.  { (/)
}  -.  ph )
3633, 35sylib 122 . . . . . . . . . . . . . 14  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  A. x  e.  { (/) }  -.  ph )
37 rabeq0 3454 . . . . . . . . . . . . . 14  |-  ( { x  e.  { (/) }  |  ph }  =  (/)  <->  A. x  e.  { (/) }  -.  ph )
3836, 37sylibr 134 . . . . . . . . . . . . 13  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  { x  e.  { (/) }  |  ph }  =  (/) )
3930, 38eqtr4d 2213 . . . . . . . . . . . 12  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  s  =  { x  e.  { (/) }  |  ph } )
4021rabex 4149 . . . . . . . . . . . . . 14  |-  { x  e.  { (/) }  |  ph }  e.  _V
4140prid1 3700 . . . . . . . . . . . . 13  |-  { x  e.  { (/) }  |  ph }  e.  { { x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }
4241, 2eleqtrri 2253 . . . . . . . . . . . 12  |-  { x  e.  { (/) }  |  ph }  e.  A
4339, 42eqeltrdi 2268 . . . . . . . . . . 11  |-  ( s  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  s  e.  A )
4428, 43syl6 33 . . . . . . . . . 10  |-  ( s  e.  r  ->  (
r  =  { x  e.  { (/) }  |  -.  ph }  ->  s  e.  A ) )
4526, 44jaod 717 . . . . . . . . 9  |-  ( s  e.  r  ->  (
( r  =  {
x  e.  { (/) }  |  ph }  \/  r  =  { x  e.  { (/) }  |  -.  ph } )  ->  s  e.  A ) )
463, 45mpan9 281 . . . . . . . 8  |-  ( ( r  e.  A  /\  s  e.  r )  ->  s  e.  A )
4746rgen2 2563 . . . . . . 7  |-  A. r  e.  A  A. s  e.  r  s  e.  A
48 dftr5 4106 . . . . . . 7  |-  ( Tr  A  <->  A. r  e.  A  A. s  e.  r 
s  e.  A )
4947, 48mpbir 146 . . . . . 6  |-  Tr  A
50 elpri 3617 . . . . . . . . 9  |-  ( z  e.  { { x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }  ->  (
z  =  { x  e.  { (/) }  |  ph }  \/  z  =  { x  e.  { (/) }  |  -.  ph }
) )
5150, 2eleq2s 2272 . . . . . . . 8  |-  ( z  e.  A  ->  (
z  =  { x  e.  { (/) }  |  ph }  \/  z  =  { x  e.  { (/) }  |  -.  ph }
) )
52 ordtriexmidlem 4520 . . . . . . . . . . 11  |-  { x  e.  { (/) }  |  ph }  e.  On
5352ontrci 4429 . . . . . . . . . 10  |-  Tr  {
x  e.  { (/) }  |  ph }
54 treq 4109 . . . . . . . . . 10  |-  ( z  =  { x  e. 
{ (/) }  |  ph }  ->  ( Tr  z  <->  Tr 
{ x  e.  { (/)
}  |  ph }
) )
5553, 54mpbiri 168 . . . . . . . . 9  |-  ( z  =  { x  e. 
{ (/) }  |  ph }  ->  Tr  z )
56 ordtriexmidlem 4520 . . . . . . . . . . 11  |-  { x  e.  { (/) }  |  -.  ph }  e.  On
5756ontrci 4429 . . . . . . . . . 10  |-  Tr  {
x  e.  { (/) }  |  -.  ph }
58 treq 4109 . . . . . . . . . 10  |-  ( z  =  { x  e. 
{ (/) }  |  -.  ph }  ->  ( Tr  z 
<->  Tr  { x  e. 
{ (/) }  |  -.  ph } ) )
5957, 58mpbiri 168 . . . . . . . . 9  |-  ( z  =  { x  e. 
{ (/) }  |  -.  ph }  ->  Tr  z
)
6055, 59jaoi 716 . . . . . . . 8  |-  ( ( z  =  { x  e.  { (/) }  |  ph }  \/  z  =  { x  e.  { (/) }  |  -.  ph }
)  ->  Tr  z
)
6151, 60syl 14 . . . . . . 7  |-  ( z  e.  A  ->  Tr  z )
6261rgen 2530 . . . . . 6  |-  A. z  e.  A  Tr  z
63 dford3 4369 . . . . . 6  |-  ( Ord 
A  <->  ( Tr  A  /\  A. z  e.  A  Tr  z ) )
6449, 62, 63mpbir2an 942 . . . . 5  |-  Ord  A
65 prexg 4213 . . . . . . . 8  |-  ( ( { x  e.  { (/)
}  |  ph }  e.  _V  /\  { x  e.  { (/) }  |  -.  ph }  e.  _V )  ->  { { x  e. 
{ (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }  e.  _V )
6640, 22, 65mp2an 426 . . . . . . 7  |-  { {
x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }  e.  _V
672, 66eqeltri 2250 . . . . . 6  |-  A  e. 
_V
6867elon 4376 . . . . 5  |-  ( A  e.  On  <->  Ord  A )
6964, 68mpbir 146 . . . 4  |-  A  e.  On
70 2onn 6524 . . . . . 6  |-  2o  e.  om
71 nnfi 6874 . . . . . 6  |-  ( 2o  e.  om  ->  2o  e.  Fin )
7270, 71ax-mp 5 . . . . 5  |-  2o  e.  Fin
73 pm5.19 706 . . . . . . . . . 10  |-  -.  ( ph 
<->  -.  ph )
7413snm 3714 . . . . . . . . . . 11  |-  E. y 
y  e.  { (/) }
75 r19.3rmv 3515 . . . . . . . . . . 11  |-  ( E. y  y  e.  { (/)
}  ->  ( ( ph 
<->  -.  ph )  <->  A. x  e.  { (/) }  ( ph  <->  -. 
ph ) ) )
7674, 75ax-mp 5 . . . . . . . . . 10  |-  ( (
ph 
<->  -.  ph )  <->  A. x  e.  { (/) }  ( ph  <->  -. 
ph ) )
7773, 76mtbi 670 . . . . . . . . 9  |-  -.  A. x  e.  { (/) }  ( ph 
<->  -.  ph )
78 rabbi 2655 . . . . . . . . 9  |-  ( A. x  e.  { (/) }  ( ph 
<->  -.  ph )  <->  { x  e.  { (/) }  |  ph }  =  { x  e.  { (/) }  |  -.  ph } )
7977, 78mtbi 670 . . . . . . . 8  |-  -.  {
x  e.  { (/) }  |  ph }  =  { x  e.  { (/) }  |  -.  ph }
8079neir 2350 . . . . . . 7  |-  { x  e.  { (/) }  |  ph }  =/=  { x  e. 
{ (/) }  |  -.  ph }
81 pr2ne 7193 . . . . . . . 8  |-  ( ( { x  e.  { (/)
}  |  ph }  e.  _V  /\  { x  e.  { (/) }  |  -.  ph }  e.  _V )  ->  ( { { x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }  ~~  2o  <->  { x  e.  { (/) }  |  ph }  =/=  { x  e.  { (/) }  |  -.  ph }
) )
8240, 22, 81mp2an 426 . . . . . . 7  |-  ( { { x  e.  { (/)
}  |  ph } ,  { x  e.  { (/)
}  |  -.  ph } }  ~~  2o  <->  { x  e.  { (/) }  |  ph }  =/=  { x  e. 
{ (/) }  |  -.  ph } )
8380, 82mpbir 146 . . . . . 6  |-  { {
x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }  ~~  2o
842, 83eqbrtri 4026 . . . . 5  |-  A  ~~  2o
85 enfii 6876 . . . . 5  |-  ( ( 2o  e.  Fin  /\  A  ~~  2o )  ->  A  e.  Fin )
8672, 84, 85mp2an 426 . . . 4  |-  A  e. 
Fin
8769, 86elini 3321 . . 3  |-  A  e.  ( On  i^i  Fin )
88 eleq2 2241 . . 3  |-  ( om  =  ( On  i^i  Fin )  ->  ( A  e.  om  <->  A  e.  ( On  i^i  Fin ) ) )
8987, 88mpbiri 168 . 2  |-  ( om  =  ( On  i^i  Fin )  ->  A  e.  om )
90 df1o2 6432 . . . . 5  |-  1o  =  { (/) }
91 1lt2o 6445 . . . . 5  |-  1o  e.  2o
9290, 91eqeltrri 2251 . . . 4  |-  { (/) }  e.  2o
93 nneneq 6859 . . . . . 6  |-  ( ( A  e.  om  /\  2o  e.  om )  -> 
( A  ~~  2o  <->  A  =  2o ) )
9470, 93mpan2 425 . . . . 5  |-  ( A  e.  om  ->  ( A  ~~  2o  <->  A  =  2o ) )
9584, 94mpbii 148 . . . 4  |-  ( A  e.  om  ->  A  =  2o )
9692, 95eleqtrrid 2267 . . 3  |-  ( A  e.  om  ->  { (/) }  e.  A )
97 elpri 3617 . . . 4  |-  ( {
(/) }  e.  { {
x  e.  { (/) }  |  ph } ,  { x  e.  { (/) }  |  -.  ph } }  ->  ( { (/) }  =  { x  e. 
{ (/) }  |  ph }  \/  { (/) }  =  { x  e.  { (/) }  |  -.  ph }
) )
9897, 2eleq2s 2272 . . 3  |-  ( {
(/) }  e.  A  ->  ( { (/) }  =  { x  e.  { (/) }  |  ph }  \/  {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }
) )
9996, 98syl 14 . 2  |-  ( A  e.  om  ->  ( { (/) }  =  {
x  e.  { (/) }  |  ph }  \/  {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }
) )
10013snid 3625 . . . . . . 7  |-  (/)  e.  { (/)
}
101 eleq2 2241 . . . . . . 7  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  ph }  ->  (
(/)  e.  { (/) }  <->  (/)  e.  {
x  e.  { (/) }  |  ph } ) )
102100, 101mpbii 148 . . . . . 6  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  ph }  ->  (/)  e.  { x  e.  { (/)
}  |  ph }
)
103 biidd 172 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ph ) )
104103elrab 2895 . . . . . 6  |-  ( (/)  e.  { x  e.  { (/)
}  |  ph }  <->  (
(/)  e.  { (/) }  /\  ph ) )
105102, 104sylib 122 . . . . 5  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  ph }  ->  (
(/)  e.  { (/) }  /\  ph ) )
106105simprd 114 . . . 4  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  ph }  ->  ph )
107 eleq2 2241 . . . . . . 7  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }  ->  ( (/)  e.  { (/) }  <->  (/) 
e.  { x  e. 
{ (/) }  |  -.  ph } ) )
108100, 107mpbii 148 . . . . . 6  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }  -> 
(/)  e.  { x  e.  { (/) }  |  -.  ph } )
109 biidd 172 . . . . . . 7  |-  ( x  =  (/)  ->  ( -. 
ph 
<->  -.  ph ) )
110109elrab 2895 . . . . . 6  |-  ( (/)  e.  { x  e.  { (/)
}  |  -.  ph } 
<->  ( (/)  e.  { (/) }  /\  -.  ph )
)
111108, 110sylib 122 . . . . 5  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }  ->  ( (/)  e.  { (/) }  /\  -.  ph )
)
112111simprd 114 . . . 4  |-  ( {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }  ->  -.  ph )
113106, 112orim12i 759 . . 3  |-  ( ( { (/) }  =  {
x  e.  { (/) }  |  ph }  \/  {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }
)  ->  ( ph  \/  -.  ph ) )
114 df-dc 835 . . 3  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
115113, 114sylibr 134 . 2  |-  ( ( { (/) }  =  {
x  e.  { (/) }  |  ph }  \/  {
(/) }  =  {
x  e.  { (/) }  |  -.  ph }
)  -> DECID  ph )
11689, 99, 1153syl 17 1  |-  ( om  =  ( On  i^i  Fin )  -> DECID  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347   A.wral 2455   {crab 2459   _Vcvv 2739    i^i cin 3130   (/)c0 3424   {csn 3594   {cpr 3595   class class class wbr 4005   Tr wtr 4103   Ord word 4364   Oncon0 4365   omcom 4591   1oc1o 6412   2oc2o 6413    ~~ cen 6740   Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-fin 6745
This theorem is referenced by:  exmidonfin  7195
  Copyright terms: Public domain W3C validator