ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddi Unicode version

Theorem orddi 815
Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
orddi  |-  ( ( ( ph  /\  ps )  \/  ( ch  /\ 
th ) )  <->  ( (
( ph  \/  ch )  /\  ( ph  \/  th ) )  /\  (
( ps  \/  ch )  /\  ( ps  \/  th ) ) ) )

Proof of Theorem orddi
StepHypRef Expression
1 ordir 812 . 2  |-  ( ( ( ph  /\  ps )  \/  ( ch  /\ 
th ) )  <->  ( ( ph  \/  ( ch  /\  th ) )  /\  ( ps  \/  ( ch  /\  th ) ) ) )
2 ordi 811 . . 3  |-  ( (
ph  \/  ( ch  /\ 
th ) )  <->  ( ( ph  \/  ch )  /\  ( ph  \/  th )
) )
3 ordi 811 . . 3  |-  ( ( ps  \/  ( ch 
/\  th ) )  <->  ( ( ps  \/  ch )  /\  ( ps  \/  th )
) )
42, 3anbi12i 457 . 2  |-  ( ( ( ph  \/  ( ch  /\  th ) )  /\  ( ps  \/  ( ch  /\  th )
) )  <->  ( (
( ph  \/  ch )  /\  ( ph  \/  th ) )  /\  (
( ps  \/  ch )  /\  ( ps  \/  th ) ) ) )
51, 4bitri 183 1  |-  ( ( ( ph  /\  ps )  \/  ( ch  /\ 
th ) )  <->  ( (
( ph  \/  ch )  /\  ( ph  \/  th ) )  /\  (
( ps  \/  ch )  /\  ( ps  \/  th ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  prneimg  3761
  Copyright terms: Public domain W3C validator