ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andir Unicode version

Theorem andir 809
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )

Proof of Theorem andir
StepHypRef Expression
1 andi 808 . 2  |-  ( ( ch  /\  ( ph  \/  ps ) )  <->  ( ( ch  /\  ph )  \/  ( ch  /\  ps ) ) )
2 ancom 264 . 2  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ch  /\  ( ph  \/  ps ) ) )
3 ancom 264 . . 3  |-  ( (
ph  /\  ch )  <->  ( ch  /\  ph )
)
4 ancom 264 . . 3  |-  ( ( ps  /\  ch )  <->  ( ch  /\  ps )
)
53, 4orbi12i 754 . 2  |-  ( ( ( ph  /\  ch )  \/  ( ps  /\ 
ch ) )  <->  ( ( ch  /\  ph )  \/  ( ch  /\  ps ) ) )
61, 2, 53bitr4i 211 1  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anddi  811  dcan  923  excxor  1368  xordc1  1383  sbequilem  1826  rexun  3301  rabun2  3400  reuun2  3404  xpundir  4660  coundi  5104  mptun  5318  tpostpos  6228  ltxr  9707  pythagtriplem2  12194  pythagtrip  12211
  Copyright terms: Public domain W3C validator