ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andir Unicode version

Theorem andir 820
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )

Proof of Theorem andir
StepHypRef Expression
1 andi 819 . 2  |-  ( ( ch  /\  ( ph  \/  ps ) )  <->  ( ( ch  /\  ph )  \/  ( ch  /\  ps ) ) )
2 ancom 266 . 2  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ch  /\  ( ph  \/  ps ) ) )
3 ancom 266 . . 3  |-  ( (
ph  /\  ch )  <->  ( ch  /\  ph )
)
4 ancom 266 . . 3  |-  ( ( ps  /\  ch )  <->  ( ch  /\  ps )
)
53, 4orbi12i 765 . 2  |-  ( ( ( ph  /\  ch )  \/  ( ps  /\ 
ch ) )  <->  ( ( ch  /\  ph )  \/  ( ch  /\  ps ) ) )
61, 2, 53bitr4i 212 1  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anddi  822  excxor  1389  xordc1  1404  sbequilem  1849  rexun  3339  rabun2  3438  reuun2  3442  xpundir  4716  coundi  5167  mptun  5385  tpostpos  6317  ltxr  9841  pythagtriplem2  12404  pythagtrip  12421
  Copyright terms: Public domain W3C validator