ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andir Unicode version

Theorem andir 809
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )

Proof of Theorem andir
StepHypRef Expression
1 andi 808 . 2  |-  ( ( ch  /\  ( ph  \/  ps ) )  <->  ( ( ch  /\  ph )  \/  ( ch  /\  ps ) ) )
2 ancom 264 . 2  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ch  /\  ( ph  \/  ps ) ) )
3 ancom 264 . . 3  |-  ( (
ph  /\  ch )  <->  ( ch  /\  ph )
)
4 ancom 264 . . 3  |-  ( ( ps  /\  ch )  <->  ( ch  /\  ps )
)
53, 4orbi12i 754 . 2  |-  ( ( ( ph  /\  ch )  \/  ( ps  /\ 
ch ) )  <->  ( ( ch  /\  ph )  \/  ( ch  /\  ps ) ) )
61, 2, 53bitr4i 211 1  |-  ( ( ( ph  \/  ps )  /\  ch )  <->  ( ( ph  /\  ch )  \/  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anddi  811  dcan  919  excxor  1357  xordc1  1372  sbequilem  1815  rexun  3283  rabun2  3382  reuun2  3386  xpundir  4636  coundi  5080  mptun  5294  tpostpos  6201  ltxr  9660
  Copyright terms: Public domain W3C validator