![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orddi | GIF version |
Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
orddi | ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordir 817 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∨ (𝜒 ∧ 𝜃)))) | |
2 | ordi 816 | . . 3 ⊢ ((𝜑 ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃))) | |
3 | ordi 816 | . . 3 ⊢ ((𝜓 ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃))) | |
4 | 2, 3 | anbi12i 460 | . 2 ⊢ (((𝜑 ∨ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∨ (𝜒 ∧ 𝜃))) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
5 | 1, 4 | bitri 184 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: prneimg 3770 |
Copyright terms: Public domain | W3C validator |