| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | Unicode version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 |
|
| anbi12.2 |
|
| Ref | Expression |
|---|---|
| anbi12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 |
. . 3
| |
| 2 | 1 | anbi1i 458 |
. 2
|
| 3 | anbi12.2 |
. . 3
| |
| 4 | 3 | anbi2i 457 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 818 orddi 821 3anbi123i 1190 an6 1332 xorcom 1399 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 nford 1581 nfand 1582 sbequ8 1861 sbanv 1904 sban 1974 sbbi 1978 sbnf2 2000 eu1 2070 2exeu 2137 2eu4 2138 sbabel 2366 neanior 2454 rexeqbii 2510 r19.26m 2628 reean 2666 reu5 2714 reu2 2952 reu3 2954 eqss 3199 unss 3338 ralunb 3345 ssin 3386 undi 3412 difundi 3416 indifdir 3420 inab 3432 difab 3433 reuss2 3444 reupick 3448 raaan 3557 prss 3779 tpss 3789 prsspw 3796 prneimg 3805 uniin 3860 intun 3906 intpr 3907 disjiun 4029 brin 4086 brdif 4087 ssext 4255 pweqb 4257 opthg2 4273 copsex4g 4281 opelopabsb 4295 eqopab2b 4315 pwin 4318 pofun 4348 wetrep 4396 ordwe 4613 wessep 4615 reg3exmidlemwe 4616 elxp3 4718 soinxp 4734 relun 4781 inopab 4799 difopab 4800 inxp 4801 opelco2g 4835 cnvco 4852 dmin 4875 restidsing 5003 intasym 5055 asymref 5056 cnvdif 5077 xpm 5092 xp11m 5109 dfco2 5170 relssdmrn 5191 cnvpom 5213 xpcom 5217 dffun4 5270 dffun4f 5275 funun 5303 funcnveq 5322 fun11 5326 fununi 5327 imadif 5339 imainlem 5340 imain 5341 fnres 5377 fnopabg 5384 fun 5433 fin 5447 dff1o2 5512 brprcneu 5554 fsn 5737 dff1o6 5826 isotr 5866 brabvv 5972 eqoprab2b 5984 fvmpopr2d 6063 dfoprab3 6258 poxp 6299 cnvoprab 6301 f1od2 6302 brtpos2 6318 tfrlem7 6384 dfer2 6602 eqer 6633 iinerm 6675 brecop 6693 eroveu 6694 erovlem 6695 oviec 6709 mapval2 6746 ixpin 6791 xpcomco 6894 xpassen 6898 ssenen 6921 sbthlemi10 7041 infmoti 7103 dfmq0qs 7513 dfplq0qs 7514 enq0enq 7515 enq0tr 7518 npsspw 7555 nqprdisj 7628 ltnqpr 7677 ltnqpri 7678 ltexprlemdisj 7690 addcanprg 7700 recexprlemdisj 7714 caucvgprprlemval 7772 addsrpr 7829 mulsrpr 7830 mulgt0sr 7862 addcnsr 7918 mulcnsr 7919 ltresr 7923 addvalex 7928 axcnre 7965 axpre-suploc 7986 supinfneg 9686 infsupneg 9687 xrnemnf 9869 xrnepnf 9870 elfzuzb 10111 fzass4 10154 infssuzex 10340 hashfacen 10945 rexanre 11402 cbvprod 11740 nnwosdc 12231 isprm3 12311 issubm 13174 issubmd 13176 0subm 13186 insubm 13187 isnsg2 13409 lss1d 14015 tgval2 14371 epttop 14410 cnnei 14552 txuni2 14576 txbas 14578 txdis1cn 14598 xmeterval 14755 dedekindicc 14953 plyun0 15056 lgslem3 15327 bj-stan 15477 nnti 15723 |
| Copyright terms: Public domain | W3C validator |