![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi12i | Unicode version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
anbi12.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anbi12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1i 458 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | anbi12.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | anbi2i 457 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anbi12ci 461 ordir 818 orddi 821 dcan 934 3anbi123i 1189 an6 1331 xorcom 1398 trubifal 1426 truxortru 1429 truxorfal 1430 falxortru 1431 falxorfal 1432 nford 1577 nfand 1578 sbequ8 1857 sbanv 1899 sban 1965 sbbi 1969 sbnf2 1991 eu1 2061 2exeu 2128 2eu4 2129 sbabel 2356 neanior 2444 rexeqbii 2500 r19.26m 2618 reean 2656 reu5 2700 reu2 2937 reu3 2939 eqss 3182 unss 3321 ralunb 3328 ssin 3369 undi 3395 difundi 3399 indifdir 3403 inab 3415 difab 3416 reuss2 3427 reupick 3431 raaan 3541 prss 3760 tpss 3770 prsspw 3777 prneimg 3786 uniin 3841 intun 3887 intpr 3888 disjiun 4010 brin 4067 brdif 4068 ssext 4233 pweqb 4235 opthg2 4251 copsex4g 4259 opelopabsb 4272 eqopab2b 4291 pwin 4294 pofun 4324 wetrep 4372 ordwe 4587 wessep 4589 reg3exmidlemwe 4590 elxp3 4692 soinxp 4708 relun 4755 inopab 4771 difopab 4772 inxp 4773 opelco2g 4807 cnvco 4824 dmin 4847 restidsing 4975 intasym 5025 asymref 5026 cnvdif 5047 xpm 5062 xp11m 5079 dfco2 5140 relssdmrn 5161 cnvpom 5183 xpcom 5187 dffun4 5239 dffun4f 5244 funun 5272 funcnveq 5291 fun11 5295 fununi 5296 imadif 5308 imainlem 5309 imain 5310 fnres 5344 fnopabg 5351 fun 5400 fin 5414 dff1o2 5478 brprcneu 5520 fsn 5701 dff1o6 5790 isotr 5830 brabvv 5934 eqoprab2b 5946 dfoprab3 6206 poxp 6247 cnvoprab 6249 f1od2 6250 brtpos2 6266 tfrlem7 6332 dfer2 6550 eqer 6581 iinerm 6621 brecop 6639 eroveu 6640 erovlem 6641 oviec 6655 mapval2 6692 ixpin 6737 xpcomco 6840 xpassen 6844 ssenen 6865 sbthlemi10 6979 infmoti 7041 dfmq0qs 7442 dfplq0qs 7443 enq0enq 7444 enq0tr 7447 npsspw 7484 nqprdisj 7557 ltnqpr 7606 ltnqpri 7607 ltexprlemdisj 7619 addcanprg 7629 recexprlemdisj 7643 caucvgprprlemval 7701 addsrpr 7758 mulsrpr 7759 mulgt0sr 7791 addcnsr 7847 mulcnsr 7848 ltresr 7852 addvalex 7857 axcnre 7894 axpre-suploc 7915 supinfneg 9609 infsupneg 9610 xrnemnf 9791 xrnepnf 9792 elfzuzb 10033 fzass4 10076 hashfacen 10830 rexanre 11243 cbvprod 11580 infssuzex 11964 nnwosdc 12054 isprm3 12132 issubm 12885 issubmd 12887 0subm 12897 insubm 12898 isnsg2 13103 lss1d 13629 tgval2 13904 epttop 13943 cnnei 14085 txuni2 14109 txbas 14111 txdis1cn 14131 xmeterval 14288 dedekindicc 14464 lgslem3 14756 bj-stan 14852 nnti 15098 |
Copyright terms: Public domain | W3C validator |