![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi12i | Unicode version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
anbi12.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anbi12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1i 458 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | anbi12.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | anbi2i 457 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anbi12ci 461 ordir 818 orddi 821 3anbi123i 1190 an6 1332 xorcom 1399 trubifal 1427 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 nford 1578 nfand 1579 sbequ8 1858 sbanv 1901 sban 1971 sbbi 1975 sbnf2 1997 eu1 2067 2exeu 2134 2eu4 2135 sbabel 2363 neanior 2451 rexeqbii 2507 r19.26m 2625 reean 2663 reu5 2711 reu2 2948 reu3 2950 eqss 3194 unss 3333 ralunb 3340 ssin 3381 undi 3407 difundi 3411 indifdir 3415 inab 3427 difab 3428 reuss2 3439 reupick 3443 raaan 3552 prss 3774 tpss 3784 prsspw 3791 prneimg 3800 uniin 3855 intun 3901 intpr 3902 disjiun 4024 brin 4081 brdif 4082 ssext 4250 pweqb 4252 opthg2 4268 copsex4g 4276 opelopabsb 4290 eqopab2b 4310 pwin 4313 pofun 4343 wetrep 4391 ordwe 4608 wessep 4610 reg3exmidlemwe 4611 elxp3 4713 soinxp 4729 relun 4776 inopab 4794 difopab 4795 inxp 4796 opelco2g 4830 cnvco 4847 dmin 4870 restidsing 4998 intasym 5050 asymref 5051 cnvdif 5072 xpm 5087 xp11m 5104 dfco2 5165 relssdmrn 5186 cnvpom 5208 xpcom 5212 dffun4 5265 dffun4f 5270 funun 5298 funcnveq 5317 fun11 5321 fununi 5322 imadif 5334 imainlem 5335 imain 5336 fnres 5370 fnopabg 5377 fun 5426 fin 5440 dff1o2 5505 brprcneu 5547 fsn 5730 dff1o6 5819 isotr 5859 brabvv 5964 eqoprab2b 5976 dfoprab3 6244 poxp 6285 cnvoprab 6287 f1od2 6288 brtpos2 6304 tfrlem7 6370 dfer2 6588 eqer 6619 iinerm 6661 brecop 6679 eroveu 6680 erovlem 6681 oviec 6695 mapval2 6732 ixpin 6777 xpcomco 6880 xpassen 6884 ssenen 6907 sbthlemi10 7025 infmoti 7087 dfmq0qs 7489 dfplq0qs 7490 enq0enq 7491 enq0tr 7494 npsspw 7531 nqprdisj 7604 ltnqpr 7653 ltnqpri 7654 ltexprlemdisj 7666 addcanprg 7676 recexprlemdisj 7690 caucvgprprlemval 7748 addsrpr 7805 mulsrpr 7806 mulgt0sr 7838 addcnsr 7894 mulcnsr 7895 ltresr 7899 addvalex 7904 axcnre 7941 axpre-suploc 7962 supinfneg 9660 infsupneg 9661 xrnemnf 9843 xrnepnf 9844 elfzuzb 10085 fzass4 10128 hashfacen 10907 rexanre 11364 cbvprod 11701 infssuzex 12086 nnwosdc 12176 isprm3 12256 issubm 13044 issubmd 13046 0subm 13056 insubm 13057 isnsg2 13273 lss1d 13879 tgval2 14219 epttop 14258 cnnei 14400 txuni2 14424 txbas 14426 txdis1cn 14446 xmeterval 14603 dedekindicc 14787 plyun0 14882 lgslem3 15118 bj-stan 15239 nnti 15485 |
Copyright terms: Public domain | W3C validator |