| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | Unicode version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 |
|
| anbi12.2 |
|
| Ref | Expression |
|---|---|
| anbi12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 |
. . 3
| |
| 2 | 1 | anbi1i 458 |
. 2
|
| 3 | anbi12.2 |
. . 3
| |
| 4 | 3 | anbi2i 457 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 822 orddi 825 3anbi123i 1212 an6 1355 xorcom 1430 trubifal 1458 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 nford 1613 nfand 1614 sbequ8 1893 sbanv 1936 sban 2006 sbbi 2010 sbnf2 2032 eu1 2102 2exeu 2170 2eu4 2171 sbabel 2399 neanior 2487 rexeqbii 2543 r19.26m 2662 reean 2700 reu5 2749 cbvreuw 2760 reu2 2991 reu3 2993 eqss 3239 unss 3378 ralunb 3385 ssin 3426 undi 3452 difundi 3456 indifdir 3460 inab 3472 difab 3473 reuss2 3484 reupick 3488 raaan 3597 prss 3824 tpss 3836 prsspw 3843 prneimg 3852 uniin 3908 intun 3954 intpr 3955 disjiun 4078 brin 4136 brdif 4137 ssext 4307 pweqb 4309 opthg2 4325 copsex4g 4333 opelopabsb 4348 eqopab2b 4368 pwin 4373 pofun 4403 wetrep 4451 ordwe 4668 wessep 4670 reg3exmidlemwe 4671 elxp3 4773 soinxp 4789 relun 4836 inopab 4854 difopab 4855 inxp 4856 opelco2g 4890 cnvco 4907 dmin 4931 restidsing 5061 intasym 5113 asymref 5114 cnvdif 5135 xpm 5150 xp11m 5167 dfco2 5228 relssdmrn 5249 cnvpom 5271 xpcom 5275 dffun4 5329 dffun4f 5334 funun 5362 funcnveq 5384 fun11 5388 fununi 5389 imadif 5401 imainlem 5402 imain 5403 fnres 5440 fnopabg 5447 fun 5497 fin 5512 dff1o2 5577 brprcneu 5620 fsn 5807 dff1o6 5900 isotr 5940 brabvv 6050 eqoprab2b 6062 fvmpopr2d 6141 dfoprab3 6337 poxp 6378 cnvoprab 6380 f1od2 6381 brtpos2 6397 tfrlem7 6463 dfer2 6681 eqer 6712 iinerm 6754 brecop 6772 eroveu 6773 erovlem 6774 oviec 6788 mapval2 6825 ixpin 6870 xpcomco 6985 xpassen 6989 ssenen 7012 sbthlemi10 7133 infmoti 7195 dfmq0qs 7616 dfplq0qs 7617 enq0enq 7618 enq0tr 7621 npsspw 7658 nqprdisj 7731 ltnqpr 7780 ltnqpri 7781 ltexprlemdisj 7793 addcanprg 7803 recexprlemdisj 7817 caucvgprprlemval 7875 addsrpr 7932 mulsrpr 7933 mulgt0sr 7965 addcnsr 8021 mulcnsr 8022 ltresr 8026 addvalex 8031 axcnre 8068 axpre-suploc 8089 supinfneg 9790 infsupneg 9791 xrnemnf 9973 xrnepnf 9974 elfzuzb 10215 fzass4 10258 infssuzex 10453 hashfacen 11058 rexanre 11731 cbvprod 12069 nnwosdc 12560 isprm3 12640 issubm 13505 issubmd 13507 0subm 13517 insubm 13518 isnsg2 13740 lss1d 14347 tgval2 14725 epttop 14764 cnnei 14906 txuni2 14930 txbas 14932 txdis1cn 14952 xmeterval 15109 dedekindicc 15307 plyun0 15410 lgslem3 15681 wlk1walkdom 16070 bj-stan 16111 nnti 16356 |
| Copyright terms: Public domain | W3C validator |