| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi12i | Unicode version | ||
| Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anbi12.1 |
|
| anbi12.2 |
|
| Ref | Expression |
|---|---|
| anbi12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 |
. . 3
| |
| 2 | 1 | anbi1i 458 |
. 2
|
| 3 | anbi12.2 |
. . 3
| |
| 4 | 3 | anbi2i 457 |
. 2
|
| 5 | 2, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anbi12ci 461 ordir 819 orddi 822 3anbi123i 1191 an6 1334 xorcom 1408 trubifal 1436 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 nford 1590 nfand 1591 sbequ8 1870 sbanv 1913 sban 1983 sbbi 1987 sbnf2 2009 eu1 2079 2exeu 2146 2eu4 2147 sbabel 2375 neanior 2463 rexeqbii 2519 r19.26m 2637 reean 2675 reu5 2723 reu2 2961 reu3 2963 eqss 3208 unss 3347 ralunb 3354 ssin 3395 undi 3421 difundi 3425 indifdir 3429 inab 3441 difab 3442 reuss2 3453 reupick 3457 raaan 3566 prss 3789 tpss 3799 prsspw 3806 prneimg 3815 uniin 3870 intun 3916 intpr 3917 disjiun 4040 brin 4097 brdif 4098 ssext 4266 pweqb 4268 opthg2 4284 copsex4g 4292 opelopabsb 4307 eqopab2b 4327 pwin 4330 pofun 4360 wetrep 4408 ordwe 4625 wessep 4627 reg3exmidlemwe 4628 elxp3 4730 soinxp 4746 relun 4793 inopab 4811 difopab 4812 inxp 4813 opelco2g 4847 cnvco 4864 dmin 4887 restidsing 5016 intasym 5068 asymref 5069 cnvdif 5090 xpm 5105 xp11m 5122 dfco2 5183 relssdmrn 5204 cnvpom 5226 xpcom 5230 dffun4 5283 dffun4f 5288 funun 5316 funcnveq 5338 fun11 5342 fununi 5343 imadif 5355 imainlem 5356 imain 5357 fnres 5394 fnopabg 5401 fun 5450 fin 5464 dff1o2 5529 brprcneu 5571 fsn 5754 dff1o6 5847 isotr 5887 brabvv 5993 eqoprab2b 6005 fvmpopr2d 6084 dfoprab3 6279 poxp 6320 cnvoprab 6322 f1od2 6323 brtpos2 6339 tfrlem7 6405 dfer2 6623 eqer 6654 iinerm 6696 brecop 6714 eroveu 6715 erovlem 6716 oviec 6730 mapval2 6767 ixpin 6812 xpcomco 6923 xpassen 6927 ssenen 6950 sbthlemi10 7070 infmoti 7132 dfmq0qs 7544 dfplq0qs 7545 enq0enq 7546 enq0tr 7549 npsspw 7586 nqprdisj 7659 ltnqpr 7708 ltnqpri 7709 ltexprlemdisj 7721 addcanprg 7731 recexprlemdisj 7745 caucvgprprlemval 7803 addsrpr 7860 mulsrpr 7861 mulgt0sr 7893 addcnsr 7949 mulcnsr 7950 ltresr 7954 addvalex 7959 axcnre 7996 axpre-suploc 8017 supinfneg 9718 infsupneg 9719 xrnemnf 9901 xrnepnf 9902 elfzuzb 10143 fzass4 10186 infssuzex 10378 hashfacen 10983 rexanre 11564 cbvprod 11902 nnwosdc 12393 isprm3 12473 issubm 13337 issubmd 13339 0subm 13349 insubm 13350 isnsg2 13572 lss1d 14178 tgval2 14556 epttop 14595 cnnei 14737 txuni2 14761 txbas 14763 txdis1cn 14783 xmeterval 14940 dedekindicc 15138 plyun0 15241 lgslem3 15512 bj-stan 15720 nnti 15966 |
| Copyright terms: Public domain | W3C validator |