ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordir Unicode version

Theorem ordir 817
Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
ordir  |-  ( ( ( ph  /\  ps )  \/  ch )  <->  ( ( ph  \/  ch )  /\  ( ps  \/  ch ) ) )

Proof of Theorem ordir
StepHypRef Expression
1 ordi 816 . 2  |-  ( ( ch  \/  ( ph  /\ 
ps ) )  <->  ( ( ch  \/  ph )  /\  ( ch  \/  ps ) ) )
2 orcom 728 . 2  |-  ( ( ( ph  /\  ps )  \/  ch )  <->  ( ch  \/  ( ph  /\ 
ps ) ) )
3 orcom 728 . . 3  |-  ( (
ph  \/  ch )  <->  ( ch  \/  ph )
)
4 orcom 728 . . 3  |-  ( ( ps  \/  ch )  <->  ( ch  \/  ps )
)
53, 4anbi12i 460 . 2  |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  ch ) )  <->  ( ( ch  \/  ph )  /\  ( ch  \/  ps ) ) )
61, 2, 53bitr4i 212 1  |-  ( ( ( ph  /\  ps )  \/  ch )  <->  ( ( ph  \/  ch )  /\  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orddi  820  pm5.62dc  945  dn1dc  960  suc11g  4558  bj-peano4  14746
  Copyright terms: Public domain W3C validator