ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prneimg Unicode version

Theorem prneimg 3786
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  ->  { A ,  B }  =/=  { C ,  D } ) )

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 3785 . . . . 5  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  <->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) ) ) )
2 orddi 821 . . . . . 6  |-  ( ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) )  <->  ( (
( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C ) )  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C )
) ) )
3 simpll 527 . . . . . . 7  |-  ( ( ( ( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C )
)  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C ) ) )  -> 
( A  =  C  \/  A  =  D ) )
4 pm1.4 728 . . . . . . . 8  |-  ( ( B  =  D  \/  B  =  C )  ->  ( B  =  C  \/  B  =  D ) )
54ad2antll 491 . . . . . . 7  |-  ( ( ( ( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C )
)  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C ) ) )  -> 
( B  =  C  \/  B  =  D ) )
63, 5jca 306 . . . . . 6  |-  ( ( ( ( A  =  C  \/  A  =  D )  /\  ( A  =  C  \/  B  =  C )
)  /\  ( ( B  =  D  \/  A  =  D )  /\  ( B  =  D  \/  B  =  C ) ) )  -> 
( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
) )
72, 6sylbi 121 . . . . 5  |-  ( ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) )  -> 
( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
) )
81, 7biimtrdi 163 . . . 4  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
) ) )
9 oranim 782 . . . . . 6  |-  ( ( A  =  C  \/  A  =  D )  ->  -.  ( -.  A  =  C  /\  -.  A  =  D ) )
10 df-ne 2358 . . . . . . 7  |-  ( A  =/=  C  <->  -.  A  =  C )
11 df-ne 2358 . . . . . . 7  |-  ( A  =/=  D  <->  -.  A  =  D )
1210, 11anbi12i 460 . . . . . 6  |-  ( ( A  =/=  C  /\  A  =/=  D )  <->  ( -.  A  =  C  /\  -.  A  =  D
) )
139, 12sylnibr 678 . . . . 5  |-  ( ( A  =  C  \/  A  =  D )  ->  -.  ( A  =/= 
C  /\  A  =/=  D ) )
14 oranim 782 . . . . . 6  |-  ( ( B  =  C  \/  B  =  D )  ->  -.  ( -.  B  =  C  /\  -.  B  =  D ) )
15 df-ne 2358 . . . . . . 7  |-  ( B  =/=  C  <->  -.  B  =  C )
16 df-ne 2358 . . . . . . 7  |-  ( B  =/=  D  <->  -.  B  =  D )
1715, 16anbi12i 460 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =/=  D )  <->  ( -.  B  =  C  /\  -.  B  =  D
) )
1814, 17sylnibr 678 . . . . 5  |-  ( ( B  =  C  \/  B  =  D )  ->  -.  ( B  =/= 
C  /\  B  =/=  D ) )
1913, 18anim12i 338 . . . 4  |-  ( ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) )  -> 
( -.  ( A  =/=  C  /\  A  =/=  D )  /\  -.  ( B  =/=  C  /\  B  =/=  D
) ) )
208, 19syl6 33 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  ->  ( -.  ( A  =/=  C  /\  A  =/=  D )  /\  -.  ( B  =/=  C  /\  B  =/=  D
) ) ) )
21 pm4.56 781 . . 3  |-  ( ( -.  ( A  =/= 
C  /\  A  =/=  D )  /\  -.  ( B  =/=  C  /\  B  =/=  D ) )  <->  -.  (
( A  =/=  C  /\  A  =/=  D
)  \/  ( B  =/=  C  /\  B  =/=  D ) ) )
2220, 21imbitrdi 161 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( { A ,  B }  =  { C ,  D }  ->  -.  ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) ) ) )
2322necon2ad 2414 1  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C  /\  B  =/=  D ) )  ->  { A ,  B }  =/=  { C ,  D } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1363    e. wcel 2158    =/= wne 2357   {cpr 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator