| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prneimg | Unicode version | ||
| Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
| Ref | Expression |
|---|---|
| prneimg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12bg 3814 |
. . . . 5
| |
| 2 | orddi 822 |
. . . . . 6
| |
| 3 | simpll 527 |
. . . . . . 7
| |
| 4 | pm1.4 729 |
. . . . . . . 8
| |
| 5 | 4 | ad2antll 491 |
. . . . . . 7
|
| 6 | 3, 5 | jca 306 |
. . . . . 6
|
| 7 | 2, 6 | sylbi 121 |
. . . . 5
|
| 8 | 1, 7 | biimtrdi 163 |
. . . 4
|
| 9 | oranim 783 |
. . . . . 6
| |
| 10 | df-ne 2377 |
. . . . . . 7
| |
| 11 | df-ne 2377 |
. . . . . . 7
| |
| 12 | 10, 11 | anbi12i 460 |
. . . . . 6
|
| 13 | 9, 12 | sylnibr 679 |
. . . . 5
|
| 14 | oranim 783 |
. . . . . 6
| |
| 15 | df-ne 2377 |
. . . . . . 7
| |
| 16 | df-ne 2377 |
. . . . . . 7
| |
| 17 | 15, 16 | anbi12i 460 |
. . . . . 6
|
| 18 | 14, 17 | sylnibr 679 |
. . . . 5
|
| 19 | 13, 18 | anim12i 338 |
. . . 4
|
| 20 | 8, 19 | syl6 33 |
. . 3
|
| 21 | pm4.56 782 |
. . 3
| |
| 22 | 20, 21 | imbitrdi 161 |
. 2
|
| 23 | 22 | necon2ad 2433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |