ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.621 Unicode version

Theorem pm2.621 699
Description: Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 13-Dec-2013.)
Assertion
Ref Expression
pm2.621  |-  ( (
ph  ->  ps )  -> 
( ( ph  \/  ps )  ->  ps )
)

Proof of Theorem pm2.621
StepHypRef Expression
1 id 19 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
2 idd 21 . 2  |-  ( (
ph  ->  ps )  -> 
( ps  ->  ps ) )
31, 2jaod 670 1  |-  ( (
ph  ->  ps )  -> 
( ( ph  \/  ps )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm2.62  700  pm2.73  753  pm4.72  770  undif4  3327
  Copyright terms: Public domain W3C validator