ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.621 GIF version

Theorem pm2.621 701
Description: Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 13-Dec-2013.)
Assertion
Ref Expression
pm2.621 ((𝜑𝜓) → ((𝜑𝜓) → 𝜓))

Proof of Theorem pm2.621
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
2 idd 21 . 2 ((𝜑𝜓) → (𝜓𝜓))
31, 2jaod 672 1 ((𝜑𝜓) → ((𝜑𝜓) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm2.62  702  pm2.73  755  pm4.72  772  undif4  3345
  Copyright terms: Public domain W3C validator