Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undif4 | Unicode version |
Description: Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
undif4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.621 742 | . . . . . . 7 | |
2 | olc 706 | . . . . . . 7 | |
3 | 1, 2 | impbid1 141 | . . . . . 6 |
4 | 3 | anbi2d 461 | . . . . 5 |
5 | eldif 3130 | . . . . . . 7 | |
6 | 5 | orbi2i 757 | . . . . . 6 |
7 | ordi 811 | . . . . . 6 | |
8 | 6, 7 | bitri 183 | . . . . 5 |
9 | elun 3268 | . . . . . 6 | |
10 | 9 | anbi1i 455 | . . . . 5 |
11 | 4, 8, 10 | 3bitr4g 222 | . . . 4 |
12 | elun 3268 | . . . 4 | |
13 | eldif 3130 | . . . 4 | |
14 | 11, 12, 13 | 3bitr4g 222 | . . 3 |
15 | 14 | alimi 1448 | . 2 |
16 | disj1 3465 | . 2 | |
17 | dfcleq 2164 | . 2 | |
18 | 15, 16, 17 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wal 1346 wceq 1348 wcel 2141 cdif 3118 cun 3119 cin 3120 c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-nul 3415 |
This theorem is referenced by: phplem1 6830 |
Copyright terms: Public domain | W3C validator |