Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undif4 | Unicode version |
Description: Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
undif4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.621 737 | . . . . . . 7 | |
2 | olc 701 | . . . . . . 7 | |
3 | 1, 2 | impbid1 141 | . . . . . 6 |
4 | 3 | anbi2d 460 | . . . . 5 |
5 | eldif 3111 | . . . . . . 7 | |
6 | 5 | orbi2i 752 | . . . . . 6 |
7 | ordi 806 | . . . . . 6 | |
8 | 6, 7 | bitri 183 | . . . . 5 |
9 | elun 3248 | . . . . . 6 | |
10 | 9 | anbi1i 454 | . . . . 5 |
11 | 4, 8, 10 | 3bitr4g 222 | . . . 4 |
12 | elun 3248 | . . . 4 | |
13 | eldif 3111 | . . . 4 | |
14 | 11, 12, 13 | 3bitr4g 222 | . . 3 |
15 | 14 | alimi 1435 | . 2 |
16 | disj1 3444 | . 2 | |
17 | dfcleq 2151 | . 2 | |
18 | 15, 16, 17 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wal 1333 wceq 1335 wcel 2128 cdif 3099 cun 3100 cin 3101 c0 3394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-nul 3395 |
This theorem is referenced by: phplem1 6794 |
Copyright terms: Public domain | W3C validator |