ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.74d Unicode version

Theorem pm5.74d 181
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.)
Hypothesis
Ref Expression
pm5.74d.1  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
Assertion
Ref Expression
pm5.74d  |-  ( ph  ->  ( ( ps  ->  ch )  <->  ( ps  ->  th ) ) )

Proof of Theorem pm5.74d
StepHypRef Expression
1 pm5.74d.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
2 pm5.74 178 . 2  |-  ( ( ps  ->  ( ch  <->  th ) )  <->  ( ( ps  ->  ch )  <->  ( ps  ->  th ) ) )
31, 2sylib 121 1  |-  ( ph  ->  ( ( ps  ->  ch )  <->  ( ps  ->  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  imbi2d  229  imim21b  251  pm5.74da  441  cbval2  1914  dfiin2g  3906  brecop  6603  dom2lem  6750  nn0ind-raph  9329
  Copyright terms: Public domain W3C validator