Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brecop | Unicode version |
Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.) |
Ref | Expression |
---|---|
brecop.1 | |
brecop.2 | |
brecop.4 | |
brecop.5 | |
brecop.6 |
Ref | Expression |
---|---|
brecop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brecop.1 | . . . 4 | |
2 | brecop.4 | . . . 4 | |
3 | 1, 2 | ecopqsi 6568 | . . 3 |
4 | 1, 2 | ecopqsi 6568 | . . 3 |
5 | df-br 3990 | . . . . 5 | |
6 | brecop.5 | . . . . . 6 | |
7 | 6 | eleq2i 2237 | . . . . 5 |
8 | 5, 7 | bitri 183 | . . . 4 |
9 | eqeq1 2177 | . . . . . . . 8 | |
10 | 9 | anbi1d 462 | . . . . . . 7 |
11 | 10 | anbi1d 462 | . . . . . 6 |
12 | 11 | 4exbidv 1863 | . . . . 5 |
13 | eqeq1 2177 | . . . . . . . 8 | |
14 | 13 | anbi2d 461 | . . . . . . 7 |
15 | 14 | anbi1d 462 | . . . . . 6 |
16 | 15 | 4exbidv 1863 | . . . . 5 |
17 | 12, 16 | opelopab2 4255 | . . . 4 |
18 | 8, 17 | syl5bb 191 | . . 3 |
19 | 3, 4, 18 | syl2an 287 | . 2 |
20 | opeq12 3767 | . . . . . 6 | |
21 | 20 | eceq1d 6549 | . . . . 5 |
22 | opeq12 3767 | . . . . . 6 | |
23 | 22 | eceq1d 6549 | . . . . 5 |
24 | 21, 23 | anim12i 336 | . . . 4 |
25 | opelxpi 4643 | . . . . . . . 8 | |
26 | opelxp 4641 | . . . . . . . . 9 | |
27 | brecop.2 | . . . . . . . . . . 11 | |
28 | 27 | a1i 9 | . . . . . . . . . 10 |
29 | id 19 | . . . . . . . . . 10 | |
30 | 28, 29 | ereldm 6556 | . . . . . . . . 9 |
31 | 26, 30 | bitr3id 193 | . . . . . . . 8 |
32 | 25, 31 | syl5ibr 155 | . . . . . . 7 |
33 | opelxpi 4643 | . . . . . . . 8 | |
34 | opelxp 4641 | . . . . . . . . 9 | |
35 | 27 | a1i 9 | . . . . . . . . . 10 |
36 | id 19 | . . . . . . . . . 10 | |
37 | 35, 36 | ereldm 6556 | . . . . . . . . 9 |
38 | 34, 37 | bitr3id 193 | . . . . . . . 8 |
39 | 33, 38 | syl5ibr 155 | . . . . . . 7 |
40 | 32, 39 | im2anan9 593 | . . . . . 6 |
41 | brecop.6 | . . . . . . . . 9 | |
42 | 41 | an4s 583 | . . . . . . . 8 |
43 | 42 | ex 114 | . . . . . . 7 |
44 | 43 | com13 80 | . . . . . 6 |
45 | 40, 44 | mpdd 41 | . . . . 5 |
46 | 45 | pm5.74d 181 | . . . 4 |
47 | 24, 46 | cgsex4g 2767 | . . 3 |
48 | eqcom 2172 | . . . . . . 7 | |
49 | eqcom 2172 | . . . . . . 7 | |
50 | 48, 49 | anbi12i 457 | . . . . . 6 |
51 | 50 | a1i 9 | . . . . 5 |
52 | biimt 240 | . . . . 5 | |
53 | 51, 52 | anbi12d 470 | . . . 4 |
54 | 53 | 4exbidv 1863 | . . 3 |
55 | biimt 240 | . . 3 | |
56 | 47, 54, 55 | 3bitr4d 219 | . 2 |
57 | 19, 56 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 cop 3586 class class class wbr 3989 copab 4049 cxp 4609 wer 6510 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-er 6513 df-ec 6515 df-qs 6519 |
This theorem is referenced by: ordpipqqs 7336 ltsrprg 7709 |
Copyright terms: Public domain | W3C validator |