| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brecop | Unicode version | ||
| Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.) |
| Ref | Expression |
|---|---|
| brecop.1 |
|
| brecop.2 |
|
| brecop.4 |
|
| brecop.5 |
|
| brecop.6 |
|
| Ref | Expression |
|---|---|
| brecop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brecop.1 |
. . . 4
| |
| 2 | brecop.4 |
. . . 4
| |
| 3 | 1, 2 | ecopqsi 6658 |
. . 3
|
| 4 | 1, 2 | ecopqsi 6658 |
. . 3
|
| 5 | df-br 4035 |
. . . . 5
| |
| 6 | brecop.5 |
. . . . . 6
| |
| 7 | 6 | eleq2i 2263 |
. . . . 5
|
| 8 | 5, 7 | bitri 184 |
. . . 4
|
| 9 | eqeq1 2203 |
. . . . . . . 8
| |
| 10 | 9 | anbi1d 465 |
. . . . . . 7
|
| 11 | 10 | anbi1d 465 |
. . . . . 6
|
| 12 | 11 | 4exbidv 1884 |
. . . . 5
|
| 13 | eqeq1 2203 |
. . . . . . . 8
| |
| 14 | 13 | anbi2d 464 |
. . . . . . 7
|
| 15 | 14 | anbi1d 465 |
. . . . . 6
|
| 16 | 15 | 4exbidv 1884 |
. . . . 5
|
| 17 | 12, 16 | opelopab2 4306 |
. . . 4
|
| 18 | 8, 17 | bitrid 192 |
. . 3
|
| 19 | 3, 4, 18 | syl2an 289 |
. 2
|
| 20 | opeq12 3811 |
. . . . . 6
| |
| 21 | 20 | eceq1d 6637 |
. . . . 5
|
| 22 | opeq12 3811 |
. . . . . 6
| |
| 23 | 22 | eceq1d 6637 |
. . . . 5
|
| 24 | 21, 23 | anim12i 338 |
. . . 4
|
| 25 | opelxpi 4696 |
. . . . . . . 8
| |
| 26 | opelxp 4694 |
. . . . . . . . 9
| |
| 27 | brecop.2 |
. . . . . . . . . . 11
| |
| 28 | 27 | a1i 9 |
. . . . . . . . . 10
|
| 29 | id 19 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | ereldm 6646 |
. . . . . . . . 9
|
| 31 | 26, 30 | bitr3id 194 |
. . . . . . . 8
|
| 32 | 25, 31 | imbitrrid 156 |
. . . . . . 7
|
| 33 | opelxpi 4696 |
. . . . . . . 8
| |
| 34 | opelxp 4694 |
. . . . . . . . 9
| |
| 35 | 27 | a1i 9 |
. . . . . . . . . 10
|
| 36 | id 19 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | ereldm 6646 |
. . . . . . . . 9
|
| 38 | 34, 37 | bitr3id 194 |
. . . . . . . 8
|
| 39 | 33, 38 | imbitrrid 156 |
. . . . . . 7
|
| 40 | 32, 39 | im2anan9 598 |
. . . . . 6
|
| 41 | brecop.6 |
. . . . . . . . 9
| |
| 42 | 41 | an4s 588 |
. . . . . . . 8
|
| 43 | 42 | ex 115 |
. . . . . . 7
|
| 44 | 43 | com13 80 |
. . . . . 6
|
| 45 | 40, 44 | mpdd 41 |
. . . . 5
|
| 46 | 45 | pm5.74d 182 |
. . . 4
|
| 47 | 24, 46 | cgsex4g 2800 |
. . 3
|
| 48 | eqcom 2198 |
. . . . . . 7
| |
| 49 | eqcom 2198 |
. . . . . . 7
| |
| 50 | 48, 49 | anbi12i 460 |
. . . . . 6
|
| 51 | 50 | a1i 9 |
. . . . 5
|
| 52 | biimt 241 |
. . . . 5
| |
| 53 | 51, 52 | anbi12d 473 |
. . . 4
|
| 54 | 53 | 4exbidv 1884 |
. . 3
|
| 55 | biimt 241 |
. . 3
| |
| 56 | 47, 54, 55 | 3bitr4d 220 |
. 2
|
| 57 | 19, 56 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-er 6601 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: ordpipqqs 7458 ltsrprg 7831 |
| Copyright terms: Public domain | W3C validator |