| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiin2g | Unicode version | ||
| Description: Alternate definition of
indexed intersection when |
| Ref | Expression |
|---|---|
| dfiin2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2490 |
. . . 4
| |
| 2 | df-ral 2490 |
. . . . . 6
| |
| 3 | eleq2 2270 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | biimprcd 160 |
. . . . . . . . . . . 12
|
| 5 | 4 | alrimiv 1898 |
. . . . . . . . . . 11
|
| 6 | eqid 2206 |
. . . . . . . . . . . 12
| |
| 7 | eqeq1 2213 |
. . . . . . . . . . . . . 14
| |
| 8 | 7, 3 | imbi12d 234 |
. . . . . . . . . . . . 13
|
| 9 | 8 | spcgv 2864 |
. . . . . . . . . . . 12
|
| 10 | 6, 9 | mpii 44 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | impbid2 143 |
. . . . . . . . . 10
|
| 12 | 11 | imim2i 12 |
. . . . . . . . 9
|
| 13 | 12 | pm5.74d 182 |
. . . . . . . 8
|
| 14 | 13 | alimi 1479 |
. . . . . . 7
|
| 15 | albi 1492 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 2, 16 | sylbi 121 |
. . . . 5
|
| 18 | df-ral 2490 |
. . . . . . . 8
| |
| 19 | 18 | albii 1494 |
. . . . . . 7
|
| 20 | alcom 1502 |
. . . . . . 7
| |
| 21 | 19, 20 | bitr4i 187 |
. . . . . 6
|
| 22 | r19.23v 2616 |
. . . . . . . 8
| |
| 23 | vex 2776 |
. . . . . . . . . 10
| |
| 24 | eqeq1 2213 |
. . . . . . . . . . 11
| |
| 25 | 24 | rexbidv 2508 |
. . . . . . . . . 10
|
| 26 | 23, 25 | elab 2921 |
. . . . . . . . 9
|
| 27 | 26 | imbi1i 238 |
. . . . . . . 8
|
| 28 | 22, 27 | bitr4i 187 |
. . . . . . 7
|
| 29 | 28 | albii 1494 |
. . . . . 6
|
| 30 | 19.21v 1897 |
. . . . . . 7
| |
| 31 | 30 | albii 1494 |
. . . . . 6
|
| 32 | 21, 29, 31 | 3bitr3ri 211 |
. . . . 5
|
| 33 | 17, 32 | bitrdi 196 |
. . . 4
|
| 34 | 1, 33 | bitrid 192 |
. . 3
|
| 35 | 34 | abbidv 2324 |
. 2
|
| 36 | df-iin 3939 |
. 2
| |
| 37 | df-int 3895 |
. 2
| |
| 38 | 35, 36, 37 | 3eqtr4g 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-int 3895 df-iin 3939 |
| This theorem is referenced by: dfiin2 3971 iinexgm 4209 dfiin3g 4950 fniinfv 5655 |
| Copyright terms: Public domain | W3C validator |