| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiin2g | Unicode version | ||
| Description: Alternate definition of
indexed intersection when |
| Ref | Expression |
|---|---|
| dfiin2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 |
. . . 4
| |
| 2 | df-ral 2513 |
. . . . . 6
| |
| 3 | eleq2 2293 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | biimprcd 160 |
. . . . . . . . . . . 12
|
| 5 | 4 | alrimiv 1920 |
. . . . . . . . . . 11
|
| 6 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 7 | eqeq1 2236 |
. . . . . . . . . . . . . 14
| |
| 8 | 7, 3 | imbi12d 234 |
. . . . . . . . . . . . 13
|
| 9 | 8 | spcgv 2890 |
. . . . . . . . . . . 12
|
| 10 | 6, 9 | mpii 44 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | impbid2 143 |
. . . . . . . . . 10
|
| 12 | 11 | imim2i 12 |
. . . . . . . . 9
|
| 13 | 12 | pm5.74d 182 |
. . . . . . . 8
|
| 14 | 13 | alimi 1501 |
. . . . . . 7
|
| 15 | albi 1514 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 2, 16 | sylbi 121 |
. . . . 5
|
| 18 | df-ral 2513 |
. . . . . . . 8
| |
| 19 | 18 | albii 1516 |
. . . . . . 7
|
| 20 | alcom 1524 |
. . . . . . 7
| |
| 21 | 19, 20 | bitr4i 187 |
. . . . . 6
|
| 22 | r19.23v 2640 |
. . . . . . . 8
| |
| 23 | vex 2802 |
. . . . . . . . . 10
| |
| 24 | eqeq1 2236 |
. . . . . . . . . . 11
| |
| 25 | 24 | rexbidv 2531 |
. . . . . . . . . 10
|
| 26 | 23, 25 | elab 2947 |
. . . . . . . . 9
|
| 27 | 26 | imbi1i 238 |
. . . . . . . 8
|
| 28 | 22, 27 | bitr4i 187 |
. . . . . . 7
|
| 29 | 28 | albii 1516 |
. . . . . 6
|
| 30 | 19.21v 1919 |
. . . . . . 7
| |
| 31 | 30 | albii 1516 |
. . . . . 6
|
| 32 | 21, 29, 31 | 3bitr3ri 211 |
. . . . 5
|
| 33 | 17, 32 | bitrdi 196 |
. . . 4
|
| 34 | 1, 33 | bitrid 192 |
. . 3
|
| 35 | 34 | abbidv 2347 |
. 2
|
| 36 | df-iin 3967 |
. 2
| |
| 37 | df-int 3923 |
. 2
| |
| 38 | 35, 36, 37 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-int 3923 df-iin 3967 |
| This theorem is referenced by: dfiin2 3999 iinexgm 4237 dfiin3g 4981 fniinfv 5691 |
| Copyright terms: Public domain | W3C validator |