| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiin2g | Unicode version | ||
| Description: Alternate definition of
indexed intersection when |
| Ref | Expression |
|---|---|
| dfiin2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 |
. . . 4
| |
| 2 | df-ral 2480 |
. . . . . 6
| |
| 3 | eleq2 2260 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | biimprcd 160 |
. . . . . . . . . . . 12
|
| 5 | 4 | alrimiv 1888 |
. . . . . . . . . . 11
|
| 6 | eqid 2196 |
. . . . . . . . . . . 12
| |
| 7 | eqeq1 2203 |
. . . . . . . . . . . . . 14
| |
| 8 | 7, 3 | imbi12d 234 |
. . . . . . . . . . . . 13
|
| 9 | 8 | spcgv 2851 |
. . . . . . . . . . . 12
|
| 10 | 6, 9 | mpii 44 |
. . . . . . . . . . 11
|
| 11 | 5, 10 | impbid2 143 |
. . . . . . . . . 10
|
| 12 | 11 | imim2i 12 |
. . . . . . . . 9
|
| 13 | 12 | pm5.74d 182 |
. . . . . . . 8
|
| 14 | 13 | alimi 1469 |
. . . . . . 7
|
| 15 | albi 1482 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | 2, 16 | sylbi 121 |
. . . . 5
|
| 18 | df-ral 2480 |
. . . . . . . 8
| |
| 19 | 18 | albii 1484 |
. . . . . . 7
|
| 20 | alcom 1492 |
. . . . . . 7
| |
| 21 | 19, 20 | bitr4i 187 |
. . . . . 6
|
| 22 | r19.23v 2606 |
. . . . . . . 8
| |
| 23 | vex 2766 |
. . . . . . . . . 10
| |
| 24 | eqeq1 2203 |
. . . . . . . . . . 11
| |
| 25 | 24 | rexbidv 2498 |
. . . . . . . . . 10
|
| 26 | 23, 25 | elab 2908 |
. . . . . . . . 9
|
| 27 | 26 | imbi1i 238 |
. . . . . . . 8
|
| 28 | 22, 27 | bitr4i 187 |
. . . . . . 7
|
| 29 | 28 | albii 1484 |
. . . . . 6
|
| 30 | 19.21v 1887 |
. . . . . . 7
| |
| 31 | 30 | albii 1484 |
. . . . . 6
|
| 32 | 21, 29, 31 | 3bitr3ri 211 |
. . . . 5
|
| 33 | 17, 32 | bitrdi 196 |
. . . 4
|
| 34 | 1, 33 | bitrid 192 |
. . 3
|
| 35 | 34 | abbidv 2314 |
. 2
|
| 36 | df-iin 3919 |
. 2
| |
| 37 | df-int 3875 |
. 2
| |
| 38 | 35, 36, 37 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-int 3875 df-iin 3919 |
| This theorem is referenced by: dfiin2 3951 iinexgm 4187 dfiin3g 4924 fniinfv 5619 |
| Copyright terms: Public domain | W3C validator |