Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfiin2g | Unicode version |
Description: Alternate definition of indexed intersection when is a set. (Contributed by Jeff Hankins, 27-Aug-2009.) |
Ref | Expression |
---|---|
dfiin2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2458 | . . . 4 | |
2 | df-ral 2458 | . . . . . 6 | |
3 | eleq2 2239 | . . . . . . . . . . . . 13 | |
4 | 3 | biimprcd 160 | . . . . . . . . . . . 12 |
5 | 4 | alrimiv 1872 | . . . . . . . . . . 11 |
6 | eqid 2175 | . . . . . . . . . . . 12 | |
7 | eqeq1 2182 | . . . . . . . . . . . . . 14 | |
8 | 7, 3 | imbi12d 234 | . . . . . . . . . . . . 13 |
9 | 8 | spcgv 2822 | . . . . . . . . . . . 12 |
10 | 6, 9 | mpii 44 | . . . . . . . . . . 11 |
11 | 5, 10 | impbid2 143 | . . . . . . . . . 10 |
12 | 11 | imim2i 12 | . . . . . . . . 9 |
13 | 12 | pm5.74d 182 | . . . . . . . 8 |
14 | 13 | alimi 1453 | . . . . . . 7 |
15 | albi 1466 | . . . . . . 7 | |
16 | 14, 15 | syl 14 | . . . . . 6 |
17 | 2, 16 | sylbi 121 | . . . . 5 |
18 | df-ral 2458 | . . . . . . . 8 | |
19 | 18 | albii 1468 | . . . . . . 7 |
20 | alcom 1476 | . . . . . . 7 | |
21 | 19, 20 | bitr4i 187 | . . . . . 6 |
22 | r19.23v 2584 | . . . . . . . 8 | |
23 | vex 2738 | . . . . . . . . . 10 | |
24 | eqeq1 2182 | . . . . . . . . . . 11 | |
25 | 24 | rexbidv 2476 | . . . . . . . . . 10 |
26 | 23, 25 | elab 2879 | . . . . . . . . 9 |
27 | 26 | imbi1i 238 | . . . . . . . 8 |
28 | 22, 27 | bitr4i 187 | . . . . . . 7 |
29 | 28 | albii 1468 | . . . . . 6 |
30 | 19.21v 1871 | . . . . . . 7 | |
31 | 30 | albii 1468 | . . . . . 6 |
32 | 21, 29, 31 | 3bitr3ri 211 | . . . . 5 |
33 | 17, 32 | bitrdi 196 | . . . 4 |
34 | 1, 33 | bitrid 192 | . . 3 |
35 | 34 | abbidv 2293 | . 2 |
36 | df-iin 3885 | . 2 | |
37 | df-int 3841 | . 2 | |
38 | 35, 36, 37 | 3eqtr4g 2233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 wcel 2146 cab 2161 wral 2453 wrex 2454 cint 3840 ciin 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-int 3841 df-iin 3885 |
This theorem is referenced by: dfiin2 3917 iinexgm 4149 dfiin3g 4878 fniinfv 5566 |
Copyright terms: Public domain | W3C validator |