Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfiin2g | Unicode version |
Description: Alternate definition of indexed intersection when is a set. (Contributed by Jeff Hankins, 27-Aug-2009.) |
Ref | Expression |
---|---|
dfiin2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . . . 4 | |
2 | df-ral 2453 | . . . . . 6 | |
3 | eleq2 2234 | . . . . . . . . . . . . 13 | |
4 | 3 | biimprcd 159 | . . . . . . . . . . . 12 |
5 | 4 | alrimiv 1867 | . . . . . . . . . . 11 |
6 | eqid 2170 | . . . . . . . . . . . 12 | |
7 | eqeq1 2177 | . . . . . . . . . . . . . 14 | |
8 | 7, 3 | imbi12d 233 | . . . . . . . . . . . . 13 |
9 | 8 | spcgv 2817 | . . . . . . . . . . . 12 |
10 | 6, 9 | mpii 44 | . . . . . . . . . . 11 |
11 | 5, 10 | impbid2 142 | . . . . . . . . . 10 |
12 | 11 | imim2i 12 | . . . . . . . . 9 |
13 | 12 | pm5.74d 181 | . . . . . . . 8 |
14 | 13 | alimi 1448 | . . . . . . 7 |
15 | albi 1461 | . . . . . . 7 | |
16 | 14, 15 | syl 14 | . . . . . 6 |
17 | 2, 16 | sylbi 120 | . . . . 5 |
18 | df-ral 2453 | . . . . . . . 8 | |
19 | 18 | albii 1463 | . . . . . . 7 |
20 | alcom 1471 | . . . . . . 7 | |
21 | 19, 20 | bitr4i 186 | . . . . . 6 |
22 | r19.23v 2579 | . . . . . . . 8 | |
23 | vex 2733 | . . . . . . . . . 10 | |
24 | eqeq1 2177 | . . . . . . . . . . 11 | |
25 | 24 | rexbidv 2471 | . . . . . . . . . 10 |
26 | 23, 25 | elab 2874 | . . . . . . . . 9 |
27 | 26 | imbi1i 237 | . . . . . . . 8 |
28 | 22, 27 | bitr4i 186 | . . . . . . 7 |
29 | 28 | albii 1463 | . . . . . 6 |
30 | 19.21v 1866 | . . . . . . 7 | |
31 | 30 | albii 1463 | . . . . . 6 |
32 | 21, 29, 31 | 3bitr3ri 210 | . . . . 5 |
33 | 17, 32 | bitrdi 195 | . . . 4 |
34 | 1, 33 | syl5bb 191 | . . 3 |
35 | 34 | abbidv 2288 | . 2 |
36 | df-iin 3876 | . 2 | |
37 | df-int 3832 | . 2 | |
38 | 35, 36, 37 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cint 3831 ciin 3874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-int 3832 df-iin 3876 |
This theorem is referenced by: dfiin2 3908 iinexgm 4140 dfiin3g 4869 fniinfv 5554 |
Copyright terms: Public domain | W3C validator |