ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.74ri Unicode version

Theorem pm5.74ri 180
Description: Distribution of implication over biconditional (reverse inference form). (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
pm5.74ri.1  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ch ) )
Assertion
Ref Expression
pm5.74ri  |-  ( ph  ->  ( ps  <->  ch )
)

Proof of Theorem pm5.74ri
StepHypRef Expression
1 pm5.74ri.1 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ch ) )
2 pm5.74 178 . 2  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ( ph  ->  ps )  <->  ( ph  ->  ch ) ) )
31, 2mpbir 145 1  |-  ( ph  ->  ( ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bitrd  187  bibi2d  231  tbt  246  cbval2  1914  sbco2d  1959  sbco2vd  1960  isprm2  12071
  Copyright terms: Public domain W3C validator