| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dom2lem | Unicode version | ||
| Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| dom2d.1 |
|
| dom2d.2 |
|
| Ref | Expression |
|---|---|
| dom2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 |
. . . 4
| |
| 2 | 1 | ralrimiv 2580 |
. . 3
|
| 3 | eqid 2207 |
. . . 4
| |
| 4 | 3 | fmpt 5753 |
. . 3
|
| 5 | 2, 4 | sylib 122 |
. 2
|
| 6 | 1 | imp 124 |
. . . . . . 7
|
| 7 | 3 | fvmpt2 5686 |
. . . . . . . 8
|
| 8 | 7 | adantll 476 |
. . . . . . 7
|
| 9 | 6, 8 | mpdan 421 |
. . . . . 6
|
| 10 | 9 | adantrr 479 |
. . . . 5
|
| 11 | nfv 1552 |
. . . . . . . 8
| |
| 12 | nffvmpt1 5610 |
. . . . . . . . 9
| |
| 13 | 12 | nfeq1 2360 |
. . . . . . . 8
|
| 14 | 11, 13 | nfim 1596 |
. . . . . . 7
|
| 15 | eleq1 2270 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi2d 464 |
. . . . . . . . 9
|
| 17 | 16 | imbi1d 231 |
. . . . . . . 8
|
| 18 | 15 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 19 | anidm 396 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | bitrdi 196 |
. . . . . . . . . . 11
|
| 21 | 20 | anbi2d 464 |
. . . . . . . . . 10
|
| 22 | fveq2 5599 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | adantr 276 |
. . . . . . . . . . . 12
|
| 24 | dom2d.2 |
. . . . . . . . . . . . . 14
| |
| 25 | 24 | imp 124 |
. . . . . . . . . . . . 13
|
| 26 | 25 | biimparc 299 |
. . . . . . . . . . . 12
|
| 27 | 23, 26 | eqeq12d 2222 |
. . . . . . . . . . 11
|
| 28 | 27 | ex 115 |
. . . . . . . . . 10
|
| 29 | 21, 28 | sylbird 170 |
. . . . . . . . 9
|
| 30 | 29 | pm5.74d 182 |
. . . . . . . 8
|
| 31 | 17, 30 | bitrd 188 |
. . . . . . 7
|
| 32 | 14, 31, 9 | chvar 1781 |
. . . . . 6
|
| 33 | 32 | adantrl 478 |
. . . . 5
|
| 34 | 10, 33 | eqeq12d 2222 |
. . . 4
|
| 35 | 25 | biimpd 144 |
. . . 4
|
| 36 | 34, 35 | sylbid 150 |
. . 3
|
| 37 | 36 | ralrimivva 2590 |
. 2
|
| 38 | nfmpt1 4153 |
. . 3
| |
| 39 | nfcv 2350 |
. . 3
| |
| 40 | 38, 39 | dff13f 5862 |
. 2
|
| 41 | 5, 37, 40 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fv 5298 |
| This theorem is referenced by: dom2d 6887 dom3d 6888 4sqlem11 12839 |
| Copyright terms: Public domain | W3C validator |