| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dom2lem | Unicode version | ||
| Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| dom2d.1 |
|
| dom2d.2 |
|
| Ref | Expression |
|---|---|
| dom2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 |
. . . 4
| |
| 2 | 1 | ralrimiv 2569 |
. . 3
|
| 3 | eqid 2196 |
. . . 4
| |
| 4 | 3 | fmpt 5715 |
. . 3
|
| 5 | 2, 4 | sylib 122 |
. 2
|
| 6 | 1 | imp 124 |
. . . . . . 7
|
| 7 | 3 | fvmpt2 5648 |
. . . . . . . 8
|
| 8 | 7 | adantll 476 |
. . . . . . 7
|
| 9 | 6, 8 | mpdan 421 |
. . . . . 6
|
| 10 | 9 | adantrr 479 |
. . . . 5
|
| 11 | nfv 1542 |
. . . . . . . 8
| |
| 12 | nffvmpt1 5572 |
. . . . . . . . 9
| |
| 13 | 12 | nfeq1 2349 |
. . . . . . . 8
|
| 14 | 11, 13 | nfim 1586 |
. . . . . . 7
|
| 15 | eleq1 2259 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi2d 464 |
. . . . . . . . 9
|
| 17 | 16 | imbi1d 231 |
. . . . . . . 8
|
| 18 | 15 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 19 | anidm 396 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | bitrdi 196 |
. . . . . . . . . . 11
|
| 21 | 20 | anbi2d 464 |
. . . . . . . . . 10
|
| 22 | fveq2 5561 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | adantr 276 |
. . . . . . . . . . . 12
|
| 24 | dom2d.2 |
. . . . . . . . . . . . . 14
| |
| 25 | 24 | imp 124 |
. . . . . . . . . . . . 13
|
| 26 | 25 | biimparc 299 |
. . . . . . . . . . . 12
|
| 27 | 23, 26 | eqeq12d 2211 |
. . . . . . . . . . 11
|
| 28 | 27 | ex 115 |
. . . . . . . . . 10
|
| 29 | 21, 28 | sylbird 170 |
. . . . . . . . 9
|
| 30 | 29 | pm5.74d 182 |
. . . . . . . 8
|
| 31 | 17, 30 | bitrd 188 |
. . . . . . 7
|
| 32 | 14, 31, 9 | chvar 1771 |
. . . . . 6
|
| 33 | 32 | adantrl 478 |
. . . . 5
|
| 34 | 10, 33 | eqeq12d 2211 |
. . . 4
|
| 35 | 25 | biimpd 144 |
. . . 4
|
| 36 | 34, 35 | sylbid 150 |
. . 3
|
| 37 | 36 | ralrimivva 2579 |
. 2
|
| 38 | nfmpt1 4127 |
. . 3
| |
| 39 | nfcv 2339 |
. . 3
| |
| 40 | 38, 39 | dff13f 5820 |
. 2
|
| 41 | 5, 37, 40 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fv 5267 |
| This theorem is referenced by: dom2d 6841 dom3d 6842 4sqlem11 12595 |
| Copyright terms: Public domain | W3C validator |