| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dom2lem | Unicode version | ||
| Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| dom2d.1 | 
 | 
| dom2d.2 | 
 | 
| Ref | Expression | 
|---|---|
| dom2lem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dom2d.1 | 
. . . 4
 | |
| 2 | 1 | ralrimiv 2569 | 
. . 3
 | 
| 3 | eqid 2196 | 
. . . 4
 | |
| 4 | 3 | fmpt 5712 | 
. . 3
 | 
| 5 | 2, 4 | sylib 122 | 
. 2
 | 
| 6 | 1 | imp 124 | 
. . . . . . 7
 | 
| 7 | 3 | fvmpt2 5645 | 
. . . . . . . 8
 | 
| 8 | 7 | adantll 476 | 
. . . . . . 7
 | 
| 9 | 6, 8 | mpdan 421 | 
. . . . . 6
 | 
| 10 | 9 | adantrr 479 | 
. . . . 5
 | 
| 11 | nfv 1542 | 
. . . . . . . 8
 | |
| 12 | nffvmpt1 5569 | 
. . . . . . . . 9
 | |
| 13 | 12 | nfeq1 2349 | 
. . . . . . . 8
 | 
| 14 | 11, 13 | nfim 1586 | 
. . . . . . 7
 | 
| 15 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 16 | 15 | anbi2d 464 | 
. . . . . . . . 9
 | 
| 17 | 16 | imbi1d 231 | 
. . . . . . . 8
 | 
| 18 | 15 | anbi1d 465 | 
. . . . . . . . . . . 12
 | 
| 19 | anidm 396 | 
. . . . . . . . . . . 12
 | |
| 20 | 18, 19 | bitrdi 196 | 
. . . . . . . . . . 11
 | 
| 21 | 20 | anbi2d 464 | 
. . . . . . . . . 10
 | 
| 22 | fveq2 5558 | 
. . . . . . . . . . . . 13
 | |
| 23 | 22 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 24 | dom2d.2 | 
. . . . . . . . . . . . . 14
 | |
| 25 | 24 | imp 124 | 
. . . . . . . . . . . . 13
 | 
| 26 | 25 | biimparc 299 | 
. . . . . . . . . . . 12
 | 
| 27 | 23, 26 | eqeq12d 2211 | 
. . . . . . . . . . 11
 | 
| 28 | 27 | ex 115 | 
. . . . . . . . . 10
 | 
| 29 | 21, 28 | sylbird 170 | 
. . . . . . . . 9
 | 
| 30 | 29 | pm5.74d 182 | 
. . . . . . . 8
 | 
| 31 | 17, 30 | bitrd 188 | 
. . . . . . 7
 | 
| 32 | 14, 31, 9 | chvar 1771 | 
. . . . . 6
 | 
| 33 | 32 | adantrl 478 | 
. . . . 5
 | 
| 34 | 10, 33 | eqeq12d 2211 | 
. . . 4
 | 
| 35 | 25 | biimpd 144 | 
. . . 4
 | 
| 36 | 34, 35 | sylbid 150 | 
. . 3
 | 
| 37 | 36 | ralrimivva 2579 | 
. 2
 | 
| 38 | nfmpt1 4126 | 
. . 3
 | |
| 39 | nfcv 2339 | 
. . 3
 | |
| 40 | 38, 39 | dff13f 5817 | 
. 2
 | 
| 41 | 5, 37, 40 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fv 5266 | 
| This theorem is referenced by: dom2d 6832 dom3d 6833 4sqlem11 12570 | 
| Copyright terms: Public domain | W3C validator |