| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dom2lem | Unicode version | ||
| Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| dom2d.1 |
|
| dom2d.2 |
|
| Ref | Expression |
|---|---|
| dom2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 |
. . . 4
| |
| 2 | 1 | ralrimiv 2602 |
. . 3
|
| 3 | eqid 2229 |
. . . 4
| |
| 4 | 3 | fmpt 5784 |
. . 3
|
| 5 | 2, 4 | sylib 122 |
. 2
|
| 6 | 1 | imp 124 |
. . . . . . 7
|
| 7 | 3 | fvmpt2 5717 |
. . . . . . . 8
|
| 8 | 7 | adantll 476 |
. . . . . . 7
|
| 9 | 6, 8 | mpdan 421 |
. . . . . 6
|
| 10 | 9 | adantrr 479 |
. . . . 5
|
| 11 | nfv 1574 |
. . . . . . . 8
| |
| 12 | nffvmpt1 5637 |
. . . . . . . . 9
| |
| 13 | 12 | nfeq1 2382 |
. . . . . . . 8
|
| 14 | 11, 13 | nfim 1618 |
. . . . . . 7
|
| 15 | eleq1 2292 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi2d 464 |
. . . . . . . . 9
|
| 17 | 16 | imbi1d 231 |
. . . . . . . 8
|
| 18 | 15 | anbi1d 465 |
. . . . . . . . . . . 12
|
| 19 | anidm 396 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | bitrdi 196 |
. . . . . . . . . . 11
|
| 21 | 20 | anbi2d 464 |
. . . . . . . . . 10
|
| 22 | fveq2 5626 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | adantr 276 |
. . . . . . . . . . . 12
|
| 24 | dom2d.2 |
. . . . . . . . . . . . . 14
| |
| 25 | 24 | imp 124 |
. . . . . . . . . . . . 13
|
| 26 | 25 | biimparc 299 |
. . . . . . . . . . . 12
|
| 27 | 23, 26 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 28 | 27 | ex 115 |
. . . . . . . . . 10
|
| 29 | 21, 28 | sylbird 170 |
. . . . . . . . 9
|
| 30 | 29 | pm5.74d 182 |
. . . . . . . 8
|
| 31 | 17, 30 | bitrd 188 |
. . . . . . 7
|
| 32 | 14, 31, 9 | chvar 1803 |
. . . . . 6
|
| 33 | 32 | adantrl 478 |
. . . . 5
|
| 34 | 10, 33 | eqeq12d 2244 |
. . . 4
|
| 35 | 25 | biimpd 144 |
. . . 4
|
| 36 | 34, 35 | sylbid 150 |
. . 3
|
| 37 | 36 | ralrimivva 2612 |
. 2
|
| 38 | nfmpt1 4176 |
. . 3
| |
| 39 | nfcv 2372 |
. . 3
| |
| 40 | 38, 39 | dff13f 5893 |
. 2
|
| 41 | 5, 37, 40 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fv 5325 |
| This theorem is referenced by: dom2d 6922 dom3d 6923 4sqlem11 12919 |
| Copyright terms: Public domain | W3C validator |