Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dom2lem | Unicode version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
dom2d.1 | |
dom2d.2 |
Ref | Expression |
---|---|
dom2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | . . . 4 | |
2 | 1 | ralrimiv 2542 | . . 3 |
3 | eqid 2170 | . . . 4 | |
4 | 3 | fmpt 5646 | . . 3 |
5 | 2, 4 | sylib 121 | . 2 |
6 | 1 | imp 123 | . . . . . . 7 |
7 | 3 | fvmpt2 5579 | . . . . . . . 8 |
8 | 7 | adantll 473 | . . . . . . 7 |
9 | 6, 8 | mpdan 419 | . . . . . 6 |
10 | 9 | adantrr 476 | . . . . 5 |
11 | nfv 1521 | . . . . . . . 8 | |
12 | nffvmpt1 5507 | . . . . . . . . 9 | |
13 | 12 | nfeq1 2322 | . . . . . . . 8 |
14 | 11, 13 | nfim 1565 | . . . . . . 7 |
15 | eleq1 2233 | . . . . . . . . . 10 | |
16 | 15 | anbi2d 461 | . . . . . . . . 9 |
17 | 16 | imbi1d 230 | . . . . . . . 8 |
18 | 15 | anbi1d 462 | . . . . . . . . . . . 12 |
19 | anidm 394 | . . . . . . . . . . . 12 | |
20 | 18, 19 | bitrdi 195 | . . . . . . . . . . 11 |
21 | 20 | anbi2d 461 | . . . . . . . . . 10 |
22 | fveq2 5496 | . . . . . . . . . . . . 13 | |
23 | 22 | adantr 274 | . . . . . . . . . . . 12 |
24 | dom2d.2 | . . . . . . . . . . . . . 14 | |
25 | 24 | imp 123 | . . . . . . . . . . . . 13 |
26 | 25 | biimparc 297 | . . . . . . . . . . . 12 |
27 | 23, 26 | eqeq12d 2185 | . . . . . . . . . . 11 |
28 | 27 | ex 114 | . . . . . . . . . 10 |
29 | 21, 28 | sylbird 169 | . . . . . . . . 9 |
30 | 29 | pm5.74d 181 | . . . . . . . 8 |
31 | 17, 30 | bitrd 187 | . . . . . . 7 |
32 | 14, 31, 9 | chvar 1750 | . . . . . 6 |
33 | 32 | adantrl 475 | . . . . 5 |
34 | 10, 33 | eqeq12d 2185 | . . . 4 |
35 | 25 | biimpd 143 | . . . 4 |
36 | 34, 35 | sylbid 149 | . . 3 |
37 | 36 | ralrimivva 2552 | . 2 |
38 | nfmpt1 4082 | . . 3 | |
39 | nfcv 2312 | . . 3 | |
40 | 38, 39 | dff13f 5749 | . 2 |
41 | 5, 37, 40 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 cmpt 4050 wf 5194 wf1 5195 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fv 5206 |
This theorem is referenced by: dom2d 6751 dom3d 6752 |
Copyright terms: Public domain | W3C validator |