Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dom2lem | Unicode version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
dom2d.1 | |
dom2d.2 |
Ref | Expression |
---|---|
dom2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | . . . 4 | |
2 | 1 | ralrimiv 2529 | . . 3 |
3 | eqid 2157 | . . . 4 | |
4 | 3 | fmpt 5616 | . . 3 |
5 | 2, 4 | sylib 121 | . 2 |
6 | 1 | imp 123 | . . . . . . 7 |
7 | 3 | fvmpt2 5550 | . . . . . . . 8 |
8 | 7 | adantll 468 | . . . . . . 7 |
9 | 6, 8 | mpdan 418 | . . . . . 6 |
10 | 9 | adantrr 471 | . . . . 5 |
11 | nfv 1508 | . . . . . . . 8 | |
12 | nffvmpt1 5478 | . . . . . . . . 9 | |
13 | 12 | nfeq1 2309 | . . . . . . . 8 |
14 | 11, 13 | nfim 1552 | . . . . . . 7 |
15 | eleq1 2220 | . . . . . . . . . 10 | |
16 | 15 | anbi2d 460 | . . . . . . . . 9 |
17 | 16 | imbi1d 230 | . . . . . . . 8 |
18 | 15 | anbi1d 461 | . . . . . . . . . . . 12 |
19 | anidm 394 | . . . . . . . . . . . 12 | |
20 | 18, 19 | bitrdi 195 | . . . . . . . . . . 11 |
21 | 20 | anbi2d 460 | . . . . . . . . . 10 |
22 | fveq2 5467 | . . . . . . . . . . . . 13 | |
23 | 22 | adantr 274 | . . . . . . . . . . . 12 |
24 | dom2d.2 | . . . . . . . . . . . . . 14 | |
25 | 24 | imp 123 | . . . . . . . . . . . . 13 |
26 | 25 | biimparc 297 | . . . . . . . . . . . 12 |
27 | 23, 26 | eqeq12d 2172 | . . . . . . . . . . 11 |
28 | 27 | ex 114 | . . . . . . . . . 10 |
29 | 21, 28 | sylbird 169 | . . . . . . . . 9 |
30 | 29 | pm5.74d 181 | . . . . . . . 8 |
31 | 17, 30 | bitrd 187 | . . . . . . 7 |
32 | 14, 31, 9 | chvar 1737 | . . . . . 6 |
33 | 32 | adantrl 470 | . . . . 5 |
34 | 10, 33 | eqeq12d 2172 | . . . 4 |
35 | 25 | biimpd 143 | . . . 4 |
36 | 34, 35 | sylbid 149 | . . 3 |
37 | 36 | ralrimivva 2539 | . 2 |
38 | nfmpt1 4057 | . . 3 | |
39 | nfcv 2299 | . . 3 | |
40 | 38, 39 | dff13f 5717 | . 2 |
41 | 5, 37, 40 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 cmpt 4025 wf 5165 wf1 5166 cfv 5169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fv 5177 |
This theorem is referenced by: dom2d 6715 dom3d 6716 |
Copyright terms: Public domain | W3C validator |