![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ind-raph | Unicode version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
nn0ind-raph.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nn0ind-raph.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nn0ind-raph.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nn0ind-raph.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nn0ind-raph.5 |
![]() ![]() |
nn0ind-raph.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nn0ind-raph |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9197 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dfsbcq2 2980 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | nn0ind-raph.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | sbhypf 2801 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() | |
7 | nn0ind-raph.3 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | sbhypf 2801 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() | |
10 | nn0ind-raph.4 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | sbhypf 2801 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | nfsbc1v 2996 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 1ex 7971 |
. . . . 5
![]() ![]() ![]() ![]() | |
14 | c0ex 7970 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
15 | 0nn0 9210 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() | |
16 | eleq1a 2261 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | nn0ind-raph.5 |
. . . . . . . . . . . . . . 15
![]() ![]() | |
19 | nn0ind-raph.1 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 18, 19 | mpbiri 168 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | eqeq2 2199 |
. . . . . . . . . . . . . . . 16
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 21, 4 | syl6bir 164 |
. . . . . . . . . . . . . . 15
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22 | pm5.74d 182 |
. . . . . . . . . . . . . 14
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 20, 23 | mpbii 148 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24 | com12 30 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 14, 25 | vtocle 2826 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | nn0ind-raph.6 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
28 | 17, 26, 27 | sylc 62 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 28 | adantr 276 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | oveq1 5898 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | 0p1e1 9052 |
. . . . . . . . . . . . 13
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
32 | 30, 31 | eqtrdi 2238 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32 | eqeq2d 2201 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 33, 7 | syl6bir 164 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 34 | imp 124 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 29, 35 | mpbird 167 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 36 | ex 115 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 14, 37 | vtocle 2826 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | sbceq1a 2987 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
40 | 38, 39 | mpbid 147 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 12, 13, 40 | vtoclef 2825 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | nnnn0 9202 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
43 | 42, 27 | syl 14 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | 2, 5, 8, 11, 41, 43 | nnind 8954 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
46 | eqeq1 2196 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
47 | 19 | bicomd 141 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | 47, 10 | sylan9bb 462 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 18, 48 | mpbii 148 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 49 | ex 115 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 46, 50 | sylbird 170 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 45, 14, 51 | vtoclef 2825 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 52 | eqcoms 2192 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | 44, 53 | jaoi 717 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
55 | 1, 54 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-addcom 7930 ax-i2m1 7935 ax-0id 7938 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5193 df-fv 5239 df-ov 5894 df-inn 8939 df-n0 9196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |