ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ind-raph Unicode version

Theorem nn0ind-raph 9383
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
nn0ind-raph.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nn0ind-raph.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nn0ind-raph.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
nn0ind-raph.5  |-  ps
nn0ind-raph.6  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
Assertion
Ref Expression
nn0ind-raph  |-  ( A  e.  NN0  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nn0ind-raph
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elnn0 9191 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 dfsbcq2 2977 . . . 4  |-  ( z  =  1  ->  ( [ z  /  x ] ph  <->  [. 1  /  x ]. ph ) )
3 nfv 1538 . . . . 5  |-  F/ x ch
4 nn0ind-raph.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
53, 4sbhypf 2798 . . . 4  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ch ) )
6 nfv 1538 . . . . 5  |-  F/ x th
7 nn0ind-raph.3 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
86, 7sbhypf 2798 . . . 4  |-  ( z  =  ( y  +  1 )  ->  ( [ z  /  x ] ph  <->  th ) )
9 nfv 1538 . . . . 5  |-  F/ x ta
10 nn0ind-raph.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
119, 10sbhypf 2798 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  ta ) )
12 nfsbc1v 2993 . . . . 5  |-  F/ x [. 1  /  x ]. ph
13 1ex 7965 . . . . 5  |-  1  e.  _V
14 c0ex 7964 . . . . . . 7  |-  0  e.  _V
15 0nn0 9204 . . . . . . . . . . . 12  |-  0  e.  NN0
16 eleq1a 2259 . . . . . . . . . . . 12  |-  ( 0  e.  NN0  ->  ( y  =  0  ->  y  e.  NN0 ) )
1715, 16ax-mp 5 . . . . . . . . . . 11  |-  ( y  =  0  ->  y  e.  NN0 )
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15  |-  ps
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2018, 19mpbiri 168 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ph )
21 eqeq2 2197 . . . . . . . . . . . . . . . 16  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2221, 4syl6bir 164 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  (
x  =  0  -> 
( ph  <->  ch ) ) )
2322pm5.74d 182 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  (
( x  =  0  ->  ph )  <->  ( x  =  0  ->  ch ) ) )
2420, 23mpbii 148 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  0  ->  ch ) )
2524com12 30 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
y  =  0  ->  ch ) )
2614, 25vtocle 2823 . . . . . . . . . . 11  |-  ( y  =  0  ->  ch )
27 nn0ind-raph.6 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
2817, 26, 27sylc 62 . . . . . . . . . 10  |-  ( y  =  0  ->  th )
2928adantr 276 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  th )
30 oveq1 5895 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
y  +  1 )  =  ( 0  +  1 ) )
31 0p1e1 9046 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
3230, 31eqtrdi 2236 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
y  +  1 )  =  1 )
3332eqeq2d 2199 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
x  =  ( y  +  1 )  <->  x  = 
1 ) )
3433, 7syl6bir 164 . . . . . . . . . 10  |-  ( y  =  0  ->  (
x  =  1  -> 
( ph  <->  th ) ) )
3534imp 124 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  ( ph  <->  th )
)
3629, 35mpbird 167 . . . . . . . 8  |-  ( ( y  =  0  /\  x  =  1 )  ->  ph )
3736ex 115 . . . . . . 7  |-  ( y  =  0  ->  (
x  =  1  ->  ph ) )
3814, 37vtocle 2823 . . . . . 6  |-  ( x  =  1  ->  ph )
39 sbceq1a 2984 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<-> 
[. 1  /  x ]. ph ) )
4038, 39mpbid 147 . . . . 5  |-  ( x  =  1  ->  [. 1  /  x ]. ph )
4112, 13, 40vtoclef 2822 . . . 4  |-  [. 1  /  x ]. ph
42 nnnn0 9196 . . . . 5  |-  ( y  e.  NN  ->  y  e.  NN0 )
4342, 27syl 14 . . . 4  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
442, 5, 8, 11, 41, 43nnind 8948 . . 3  |-  ( A  e.  NN  ->  ta )
45 nfv 1538 . . . . 5  |-  F/ x
( 0  =  A  ->  ta )
46 eqeq1 2194 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  <->  0  =  A ) )
4719bicomd 141 . . . . . . . . 9  |-  ( x  =  0  ->  ( ps 
<-> 
ph ) )
4847, 10sylan9bb 462 . . . . . . . 8  |-  ( ( x  =  0  /\  x  =  A )  ->  ( ps  <->  ta )
)
4918, 48mpbii 148 . . . . . . 7  |-  ( ( x  =  0  /\  x  =  A )  ->  ta )
5049ex 115 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  ->  ta ) )
5146, 50sylbird 170 . . . . 5  |-  ( x  =  0  ->  (
0  =  A  ->  ta ) )
5245, 14, 51vtoclef 2822 . . . 4  |-  ( 0  =  A  ->  ta )
5352eqcoms 2190 . . 3  |-  ( A  =  0  ->  ta )
5444, 53jaoi 717 . 2  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ta )
551, 54sylbi 121 1  |-  ( A  e.  NN0  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1363   [wsb 1772    e. wcel 2158   [.wsbc 2974  (class class class)co 5888   0cc0 7824   1c1 7825    + caddc 7827   NNcn 8932   NN0cn0 9189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sep 4133  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-i2m1 7929  ax-0id 7932
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891  df-inn 8933  df-n0 9190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator