Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ind-raph | Unicode version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
nn0ind-raph.1 | |
nn0ind-raph.2 | |
nn0ind-raph.3 | |
nn0ind-raph.4 | |
nn0ind-raph.5 | |
nn0ind-raph.6 |
Ref | Expression |
---|---|
nn0ind-raph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9116 | . 2 | |
2 | dfsbcq2 2954 | . . . 4 | |
3 | nfv 1516 | . . . . 5 | |
4 | nn0ind-raph.2 | . . . . 5 | |
5 | 3, 4 | sbhypf 2775 | . . . 4 |
6 | nfv 1516 | . . . . 5 | |
7 | nn0ind-raph.3 | . . . . 5 | |
8 | 6, 7 | sbhypf 2775 | . . . 4 |
9 | nfv 1516 | . . . . 5 | |
10 | nn0ind-raph.4 | . . . . 5 | |
11 | 9, 10 | sbhypf 2775 | . . . 4 |
12 | nfsbc1v 2969 | . . . . 5 | |
13 | 1ex 7894 | . . . . 5 | |
14 | c0ex 7893 | . . . . . . 7 | |
15 | 0nn0 9129 | . . . . . . . . . . . 12 | |
16 | eleq1a 2238 | . . . . . . . . . . . 12 | |
17 | 15, 16 | ax-mp 5 | . . . . . . . . . . 11 |
18 | nn0ind-raph.5 | . . . . . . . . . . . . . . 15 | |
19 | nn0ind-raph.1 | . . . . . . . . . . . . . . 15 | |
20 | 18, 19 | mpbiri 167 | . . . . . . . . . . . . . 14 |
21 | eqeq2 2175 | . . . . . . . . . . . . . . . 16 | |
22 | 21, 4 | syl6bir 163 | . . . . . . . . . . . . . . 15 |
23 | 22 | pm5.74d 181 | . . . . . . . . . . . . . 14 |
24 | 20, 23 | mpbii 147 | . . . . . . . . . . . . 13 |
25 | 24 | com12 30 | . . . . . . . . . . . 12 |
26 | 14, 25 | vtocle 2800 | . . . . . . . . . . 11 |
27 | nn0ind-raph.6 | . . . . . . . . . . 11 | |
28 | 17, 26, 27 | sylc 62 | . . . . . . . . . 10 |
29 | 28 | adantr 274 | . . . . . . . . 9 |
30 | oveq1 5849 | . . . . . . . . . . . . 13 | |
31 | 0p1e1 8971 | . . . . . . . . . . . . 13 | |
32 | 30, 31 | eqtrdi 2215 | . . . . . . . . . . . 12 |
33 | 32 | eqeq2d 2177 | . . . . . . . . . . 11 |
34 | 33, 7 | syl6bir 163 | . . . . . . . . . 10 |
35 | 34 | imp 123 | . . . . . . . . 9 |
36 | 29, 35 | mpbird 166 | . . . . . . . 8 |
37 | 36 | ex 114 | . . . . . . 7 |
38 | 14, 37 | vtocle 2800 | . . . . . 6 |
39 | sbceq1a 2960 | . . . . . 6 | |
40 | 38, 39 | mpbid 146 | . . . . 5 |
41 | 12, 13, 40 | vtoclef 2799 | . . . 4 |
42 | nnnn0 9121 | . . . . 5 | |
43 | 42, 27 | syl 14 | . . . 4 |
44 | 2, 5, 8, 11, 41, 43 | nnind 8873 | . . 3 |
45 | nfv 1516 | . . . . 5 | |
46 | eqeq1 2172 | . . . . . 6 | |
47 | 19 | bicomd 140 | . . . . . . . . 9 |
48 | 47, 10 | sylan9bb 458 | . . . . . . . 8 |
49 | 18, 48 | mpbii 147 | . . . . . . 7 |
50 | 49 | ex 114 | . . . . . 6 |
51 | 46, 50 | sylbird 169 | . . . . 5 |
52 | 45, 14, 51 | vtoclef 2799 | . . . 4 |
53 | 52 | eqcoms 2168 | . . 3 |
54 | 44, 53 | jaoi 706 | . 2 |
55 | 1, 54 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wsb 1750 wcel 2136 wsbc 2951 (class class class)co 5842 cc0 7753 c1 7754 caddc 7756 cn 8857 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-i2m1 7858 ax-0id 7861 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-n0 9115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |