ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ind-raph Unicode version

Theorem nn0ind-raph 9369
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
nn0ind-raph.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nn0ind-raph.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nn0ind-raph.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
nn0ind-raph.5  |-  ps
nn0ind-raph.6  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
Assertion
Ref Expression
nn0ind-raph  |-  ( A  e.  NN0  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nn0ind-raph
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elnn0 9177 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 dfsbcq2 2965 . . . 4  |-  ( z  =  1  ->  ( [ z  /  x ] ph  <->  [. 1  /  x ]. ph ) )
3 nfv 1528 . . . . 5  |-  F/ x ch
4 nn0ind-raph.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
53, 4sbhypf 2786 . . . 4  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ch ) )
6 nfv 1528 . . . . 5  |-  F/ x th
7 nn0ind-raph.3 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
86, 7sbhypf 2786 . . . 4  |-  ( z  =  ( y  +  1 )  ->  ( [ z  /  x ] ph  <->  th ) )
9 nfv 1528 . . . . 5  |-  F/ x ta
10 nn0ind-raph.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
119, 10sbhypf 2786 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  ta ) )
12 nfsbc1v 2981 . . . . 5  |-  F/ x [. 1  /  x ]. ph
13 1ex 7951 . . . . 5  |-  1  e.  _V
14 c0ex 7950 . . . . . . 7  |-  0  e.  _V
15 0nn0 9190 . . . . . . . . . . . 12  |-  0  e.  NN0
16 eleq1a 2249 . . . . . . . . . . . 12  |-  ( 0  e.  NN0  ->  ( y  =  0  ->  y  e.  NN0 ) )
1715, 16ax-mp 5 . . . . . . . . . . 11  |-  ( y  =  0  ->  y  e.  NN0 )
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15  |-  ps
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2018, 19mpbiri 168 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ph )
21 eqeq2 2187 . . . . . . . . . . . . . . . 16  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2221, 4syl6bir 164 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  (
x  =  0  -> 
( ph  <->  ch ) ) )
2322pm5.74d 182 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  (
( x  =  0  ->  ph )  <->  ( x  =  0  ->  ch ) ) )
2420, 23mpbii 148 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  0  ->  ch ) )
2524com12 30 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
y  =  0  ->  ch ) )
2614, 25vtocle 2811 . . . . . . . . . . 11  |-  ( y  =  0  ->  ch )
27 nn0ind-raph.6 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
2817, 26, 27sylc 62 . . . . . . . . . 10  |-  ( y  =  0  ->  th )
2928adantr 276 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  th )
30 oveq1 5881 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
y  +  1 )  =  ( 0  +  1 ) )
31 0p1e1 9032 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
3230, 31eqtrdi 2226 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
y  +  1 )  =  1 )
3332eqeq2d 2189 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
x  =  ( y  +  1 )  <->  x  = 
1 ) )
3433, 7syl6bir 164 . . . . . . . . . 10  |-  ( y  =  0  ->  (
x  =  1  -> 
( ph  <->  th ) ) )
3534imp 124 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  ( ph  <->  th )
)
3629, 35mpbird 167 . . . . . . . 8  |-  ( ( y  =  0  /\  x  =  1 )  ->  ph )
3736ex 115 . . . . . . 7  |-  ( y  =  0  ->  (
x  =  1  ->  ph ) )
3814, 37vtocle 2811 . . . . . 6  |-  ( x  =  1  ->  ph )
39 sbceq1a 2972 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<-> 
[. 1  /  x ]. ph ) )
4038, 39mpbid 147 . . . . 5  |-  ( x  =  1  ->  [. 1  /  x ]. ph )
4112, 13, 40vtoclef 2810 . . . 4  |-  [. 1  /  x ]. ph
42 nnnn0 9182 . . . . 5  |-  ( y  e.  NN  ->  y  e.  NN0 )
4342, 27syl 14 . . . 4  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
442, 5, 8, 11, 41, 43nnind 8934 . . 3  |-  ( A  e.  NN  ->  ta )
45 nfv 1528 . . . . 5  |-  F/ x
( 0  =  A  ->  ta )
46 eqeq1 2184 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  <->  0  =  A ) )
4719bicomd 141 . . . . . . . . 9  |-  ( x  =  0  ->  ( ps 
<-> 
ph ) )
4847, 10sylan9bb 462 . . . . . . . 8  |-  ( ( x  =  0  /\  x  =  A )  ->  ( ps  <->  ta )
)
4918, 48mpbii 148 . . . . . . 7  |-  ( ( x  =  0  /\  x  =  A )  ->  ta )
5049ex 115 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  ->  ta ) )
5146, 50sylbird 170 . . . . 5  |-  ( x  =  0  ->  (
0  =  A  ->  ta ) )
5245, 14, 51vtoclef 2810 . . . 4  |-  ( 0  =  A  ->  ta )
5352eqcoms 2180 . . 3  |-  ( A  =  0  ->  ta )
5444, 53jaoi 716 . 2  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ta )
551, 54sylbi 121 1  |-  ( A  e.  NN0  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353   [wsb 1762    e. wcel 2148   [.wsbc 2962  (class class class)co 5874   0cc0 7810   1c1 7811    + caddc 7813   NNcn 8918   NN0cn0 9175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4121  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-i2m1 7915  ax-0id 7918
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-iota 5178  df-fv 5224  df-ov 5877  df-inn 8919  df-n0 9176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator