Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ind-raph | Unicode version |
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
nn0ind-raph.1 | |
nn0ind-raph.2 | |
nn0ind-raph.3 | |
nn0ind-raph.4 | |
nn0ind-raph.5 | |
nn0ind-raph.6 |
Ref | Expression |
---|---|
nn0ind-raph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9137 | . 2 | |
2 | dfsbcq2 2958 | . . . 4 | |
3 | nfv 1521 | . . . . 5 | |
4 | nn0ind-raph.2 | . . . . 5 | |
5 | 3, 4 | sbhypf 2779 | . . . 4 |
6 | nfv 1521 | . . . . 5 | |
7 | nn0ind-raph.3 | . . . . 5 | |
8 | 6, 7 | sbhypf 2779 | . . . 4 |
9 | nfv 1521 | . . . . 5 | |
10 | nn0ind-raph.4 | . . . . 5 | |
11 | 9, 10 | sbhypf 2779 | . . . 4 |
12 | nfsbc1v 2973 | . . . . 5 | |
13 | 1ex 7915 | . . . . 5 | |
14 | c0ex 7914 | . . . . . . 7 | |
15 | 0nn0 9150 | . . . . . . . . . . . 12 | |
16 | eleq1a 2242 | . . . . . . . . . . . 12 | |
17 | 15, 16 | ax-mp 5 | . . . . . . . . . . 11 |
18 | nn0ind-raph.5 | . . . . . . . . . . . . . . 15 | |
19 | nn0ind-raph.1 | . . . . . . . . . . . . . . 15 | |
20 | 18, 19 | mpbiri 167 | . . . . . . . . . . . . . 14 |
21 | eqeq2 2180 | . . . . . . . . . . . . . . . 16 | |
22 | 21, 4 | syl6bir 163 | . . . . . . . . . . . . . . 15 |
23 | 22 | pm5.74d 181 | . . . . . . . . . . . . . 14 |
24 | 20, 23 | mpbii 147 | . . . . . . . . . . . . 13 |
25 | 24 | com12 30 | . . . . . . . . . . . 12 |
26 | 14, 25 | vtocle 2804 | . . . . . . . . . . 11 |
27 | nn0ind-raph.6 | . . . . . . . . . . 11 | |
28 | 17, 26, 27 | sylc 62 | . . . . . . . . . 10 |
29 | 28 | adantr 274 | . . . . . . . . 9 |
30 | oveq1 5860 | . . . . . . . . . . . . 13 | |
31 | 0p1e1 8992 | . . . . . . . . . . . . 13 | |
32 | 30, 31 | eqtrdi 2219 | . . . . . . . . . . . 12 |
33 | 32 | eqeq2d 2182 | . . . . . . . . . . 11 |
34 | 33, 7 | syl6bir 163 | . . . . . . . . . 10 |
35 | 34 | imp 123 | . . . . . . . . 9 |
36 | 29, 35 | mpbird 166 | . . . . . . . 8 |
37 | 36 | ex 114 | . . . . . . 7 |
38 | 14, 37 | vtocle 2804 | . . . . . 6 |
39 | sbceq1a 2964 | . . . . . 6 | |
40 | 38, 39 | mpbid 146 | . . . . 5 |
41 | 12, 13, 40 | vtoclef 2803 | . . . 4 |
42 | nnnn0 9142 | . . . . 5 | |
43 | 42, 27 | syl 14 | . . . 4 |
44 | 2, 5, 8, 11, 41, 43 | nnind 8894 | . . 3 |
45 | nfv 1521 | . . . . 5 | |
46 | eqeq1 2177 | . . . . . 6 | |
47 | 19 | bicomd 140 | . . . . . . . . 9 |
48 | 47, 10 | sylan9bb 459 | . . . . . . . 8 |
49 | 18, 48 | mpbii 147 | . . . . . . 7 |
50 | 49 | ex 114 | . . . . . 6 |
51 | 46, 50 | sylbird 169 | . . . . 5 |
52 | 45, 14, 51 | vtoclef 2803 | . . . 4 |
53 | 52 | eqcoms 2173 | . . 3 |
54 | 44, 53 | jaoi 711 | . 2 |
55 | 1, 54 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wsb 1755 wcel 2141 wsbc 2955 (class class class)co 5853 cc0 7774 c1 7775 caddc 7777 cn 8878 cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-n0 9136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |