![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.74ri | GIF version |
Description: Distribution of implication over biconditional (reverse inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74ri.1 | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Ref | Expression |
---|---|
pm5.74ri | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74ri.1 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) | |
2 | pm5.74 179 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbir 146 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bitrd 188 bibi2d 232 tbt 247 cbval2 1921 sbco2d 1966 sbco2vd 1967 isprm2 12111 |
Copyright terms: Public domain | W3C validator |