ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vd Unicode version

Theorem sbco2vd 1944
Description: Version of sbco2d 1943 with a distinct variable constraint between  x and  z. (Contributed by Jim Kingdon, 19-Feb-2018.)
Hypotheses
Ref Expression
sbco2vd.1  |-  ( ph  ->  A. x ph )
sbco2vd.2  |-  ( ph  ->  A. z ph )
sbco2vd.3  |-  ( ph  ->  ( ps  ->  A. z ps ) )
Assertion
Ref Expression
sbco2vd  |-  ( ph  ->  ( [ y  / 
z ] [ z  /  x ] ps  <->  [ y  /  x ] ps ) )
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem sbco2vd
StepHypRef Expression
1 sbco2vd.2 . . . . 5  |-  ( ph  ->  A. z ph )
2 sbco2vd.3 . . . . 5  |-  ( ph  ->  ( ps  ->  A. z ps ) )
31, 2hbim1 1547 . . . 4  |-  ( (
ph  ->  ps )  ->  A. z ( ph  ->  ps ) )
43sbco2vh 1922 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  [ y  /  x ] ( ph  ->  ps ) )
5 sbco2vd.1 . . . . . 6  |-  ( ph  ->  A. x ph )
65sbrim 1933 . . . . 5  |-  ( [ z  /  x ]
( ph  ->  ps )  <->  (
ph  ->  [ z  /  x ] ps ) )
76sbbii 1742 . . . 4  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  [ y  /  z ] ( ph  ->  [ z  /  x ] ps ) )
81sbrim 1933 . . . 4  |-  ( [ y  /  z ] ( ph  ->  [ z  /  x ] ps ) 
<->  ( ph  ->  [ y  /  z ] [
z  /  x ] ps ) )
97, 8bitri 183 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  ( ph  ->  [ y  /  z ] [ z  /  x ] ps ) )
105sbrim 1933 . . 3  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  (
ph  ->  [ y  /  x ] ps ) )
114, 9, 103bitr3i 209 . 2  |-  ( (
ph  ->  [ y  / 
z ] [ z  /  x ] ps ) 
<->  ( ph  ->  [ y  /  x ] ps ) )
1211pm5.74ri 180 1  |-  ( ph  ->  ( [ y  / 
z ] [ z  /  x ] ps  <->  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1330   [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator