ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2 Unicode version

Theorem isprm2 12071
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 1nprm 12068 . . . . 5  |-  -.  1  e.  Prime
2 eleq1 2233 . . . . . 6  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
32biimpcd 158 . . . . 5  |-  ( P  e.  Prime  ->  ( P  =  1  ->  1  e.  Prime ) )
41, 3mtoi 659 . . . 4  |-  ( P  e.  Prime  ->  -.  P  =  1 )
54neqned 2347 . . 3  |-  ( P  e.  Prime  ->  P  =/=  1 )
65pm4.71i 389 . 2  |-  ( P  e.  Prime  <->  ( P  e. 
Prime  /\  P  =/=  1
) )
7 isprm 12063 . . . 4  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
8 isprm2lem 12070 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
9 eqss 3162 . . . . . . . . . . 11  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_ 
{ n  e.  NN  |  n  ||  P }
) )
109imbi2i 225 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  ( {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
11 1idssfct 12069 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } )
12 jcab 598 . . . . . . . . . . 11  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
1311, 12mpbiran2 936 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1410, 13bitri 183 . . . . . . . . 9  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1514pm5.74ri 180 . . . . . . . 8  |-  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) )
1615adantr 274 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
178, 16bitrd 187 . . . . . 6  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1817expcom 115 . . . . 5  |-  ( P  =/=  1  ->  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
1918pm5.32d 447 . . . 4  |-  ( P  =/=  1  ->  (
( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  ~~  2o )  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
207, 19syl5bb 191 . . 3  |-  ( P  =/=  1  ->  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
2120pm5.32ri 452 . 2  |-  ( ( P  e.  Prime  /\  P  =/=  1 )  <->  ( ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  P  =/=  1 ) )
22 ancom 264 . . . 4  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  =/=  1  /\  ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) ) )
23 anass 399 . . . 4  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  =/=  1  /\  ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
2422, 23bitr4i 186 . . 3  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( ( P  =/=  1  /\  P  e.  NN )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
25 ancom 264 . . . . 5  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
( P  e.  NN  /\  P  =/=  1 ) )
26 eluz2b3 9563 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  P  =/=  1 ) )
2725, 26bitr4i 186 . . . 4  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
P  e.  ( ZZ>= ` 
2 ) )
2827anbi1i 455 . . 3  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
29 dfss2 3136 . . . . 5  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } ) )
30 breq1 3992 . . . . . . . . . 10  |-  ( n  =  z  ->  (
n  ||  P  <->  z  ||  P ) )
3130elrab 2886 . . . . . . . . 9  |-  ( z  e.  { n  e.  NN  |  n  ||  P }  <->  ( z  e.  NN  /\  z  ||  P ) )
32 vex 2733 . . . . . . . . . 10  |-  z  e. 
_V
3332elpr 3604 . . . . . . . . 9  |-  ( z  e.  { 1 ,  P }  <->  ( z  =  1  \/  z  =  P ) )
3431, 33imbi12i 238 . . . . . . . 8  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( (
z  e.  NN  /\  z  ||  P )  -> 
( z  =  1  \/  z  =  P ) ) )
35 impexp 261 . . . . . . . 8  |-  ( ( ( z  e.  NN  /\  z  ||  P )  ->  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3634, 35bitri 183 . . . . . . 7  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3736albii 1463 . . . . . 6  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
38 df-ral 2453 . . . . . 6  |-  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z ( z  e.  NN  ->  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3937, 38bitr4i 186 . . . . 5  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4029, 39bitri 183 . . . 4  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4140anbi2i 454 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
4224, 28, 413bitri 205 . 2  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
436, 21, 423bitri 205 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703   A.wal 1346    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   {crab 2452    C_ wss 3121   {cpr 3584   class class class wbr 3989   ` cfv 5198   2oc2o 6389    ~~ cen 6716   1c1 7775   NNcn 8878   2c2 8929   ZZ>=cuz 9487    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-prm 12062
This theorem is referenced by:  isprm3  12072  isprm4  12073  dvdsprime  12076  coprm  12098  isprm6  12101  infpn2  12411
  Copyright terms: Public domain W3C validator