ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2 Unicode version

Theorem isprm2 11834
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 1nprm 11831 . . . . 5  |-  -.  1  e.  Prime
2 eleq1 2203 . . . . . 6  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
32biimpcd 158 . . . . 5  |-  ( P  e.  Prime  ->  ( P  =  1  ->  1  e.  Prime ) )
41, 3mtoi 654 . . . 4  |-  ( P  e.  Prime  ->  -.  P  =  1 )
54neqned 2316 . . 3  |-  ( P  e.  Prime  ->  P  =/=  1 )
65pm4.71i 389 . 2  |-  ( P  e.  Prime  <->  ( P  e. 
Prime  /\  P  =/=  1
) )
7 isprm 11826 . . . 4  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
8 isprm2lem 11833 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
9 eqss 3117 . . . . . . . . . . 11  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_ 
{ n  e.  NN  |  n  ||  P }
) )
109imbi2i 225 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  ( {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
11 1idssfct 11832 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } )
12 jcab 593 . . . . . . . . . . 11  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
1311, 12mpbiran2 926 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1410, 13bitri 183 . . . . . . . . 9  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1514pm5.74ri 180 . . . . . . . 8  |-  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) )
1615adantr 274 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
178, 16bitrd 187 . . . . . 6  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1817expcom 115 . . . . 5  |-  ( P  =/=  1  ->  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
1918pm5.32d 446 . . . 4  |-  ( P  =/=  1  ->  (
( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  ~~  2o )  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
207, 19syl5bb 191 . . 3  |-  ( P  =/=  1  ->  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
2120pm5.32ri 451 . 2  |-  ( ( P  e.  Prime  /\  P  =/=  1 )  <->  ( ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  P  =/=  1 ) )
22 ancom 264 . . . 4  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  =/=  1  /\  ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) ) )
23 anass 399 . . . 4  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  =/=  1  /\  ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
2422, 23bitr4i 186 . . 3  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( ( P  =/=  1  /\  P  e.  NN )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
25 ancom 264 . . . . 5  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
( P  e.  NN  /\  P  =/=  1 ) )
26 eluz2b3 9425 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  P  =/=  1 ) )
2725, 26bitr4i 186 . . . 4  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
P  e.  ( ZZ>= ` 
2 ) )
2827anbi1i 454 . . 3  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
29 dfss2 3091 . . . . 5  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } ) )
30 breq1 3940 . . . . . . . . . 10  |-  ( n  =  z  ->  (
n  ||  P  <->  z  ||  P ) )
3130elrab 2844 . . . . . . . . 9  |-  ( z  e.  { n  e.  NN  |  n  ||  P }  <->  ( z  e.  NN  /\  z  ||  P ) )
32 vex 2692 . . . . . . . . . 10  |-  z  e. 
_V
3332elpr 3553 . . . . . . . . 9  |-  ( z  e.  { 1 ,  P }  <->  ( z  =  1  \/  z  =  P ) )
3431, 33imbi12i 238 . . . . . . . 8  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( (
z  e.  NN  /\  z  ||  P )  -> 
( z  =  1  \/  z  =  P ) ) )
35 impexp 261 . . . . . . . 8  |-  ( ( ( z  e.  NN  /\  z  ||  P )  ->  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3634, 35bitri 183 . . . . . . 7  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3736albii 1447 . . . . . 6  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
38 df-ral 2422 . . . . . 6  |-  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z ( z  e.  NN  ->  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3937, 38bitr4i 186 . . . . 5  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4029, 39bitri 183 . . . 4  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4140anbi2i 453 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
4224, 28, 413bitri 205 . 2  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
436, 21, 423bitri 205 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   A.wal 1330    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417   {crab 2421    C_ wss 3076   {cpr 3533   class class class wbr 3937   ` cfv 5131   2oc2o 6315    ~~ cen 6640   1c1 7645   NNcn 8744   2c2 8795   ZZ>=cuz 9350    || cdvds 11529   Primecprime 11824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-prm 11825
This theorem is referenced by:  isprm3  11835  isprm4  11836  dvdsprime  11839  coprm  11858  isprm6  11861
  Copyright terms: Public domain W3C validator