| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2d | Unicode version | ||
| Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbco2d.1 |
|
| sbco2d.2 |
|
| sbco2d.3 |
|
| Ref | Expression |
|---|---|
| sbco2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2d.2 |
. . . . 5
| |
| 2 | sbco2d.3 |
. . . . 5
| |
| 3 | 1, 2 | hbim1 1593 |
. . . 4
|
| 4 | 3 | sbco2h 1992 |
. . 3
|
| 5 | sbco2d.1 |
. . . . . 6
| |
| 6 | 5 | sbrim 1984 |
. . . . 5
|
| 7 | 6 | sbbii 1788 |
. . . 4
|
| 8 | 1 | sbrim 1984 |
. . . 4
|
| 9 | 7, 8 | bitri 184 |
. . 3
|
| 10 | 5 | sbrim 1984 |
. . 3
|
| 11 | 4, 9, 10 | 3bitr3i 210 |
. 2
|
| 12 | 11 | pm5.74ri 181 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |