ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2d Unicode version

Theorem sbco2d 1959
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
sbco2d.1  |-  ( ph  ->  A. x ph )
sbco2d.2  |-  ( ph  ->  A. z ph )
sbco2d.3  |-  ( ph  ->  ( ps  ->  A. z ps ) )
Assertion
Ref Expression
sbco2d  |-  ( ph  ->  ( [ y  / 
z ] [ z  /  x ] ps  <->  [ y  /  x ] ps ) )

Proof of Theorem sbco2d
StepHypRef Expression
1 sbco2d.2 . . . . 5  |-  ( ph  ->  A. z ph )
2 sbco2d.3 . . . . 5  |-  ( ph  ->  ( ps  ->  A. z ps ) )
31, 2hbim1 1563 . . . 4  |-  ( (
ph  ->  ps )  ->  A. z ( ph  ->  ps ) )
43sbco2h 1957 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  [ y  /  x ] ( ph  ->  ps ) )
5 sbco2d.1 . . . . . 6  |-  ( ph  ->  A. x ph )
65sbrim 1949 . . . . 5  |-  ( [ z  /  x ]
( ph  ->  ps )  <->  (
ph  ->  [ z  /  x ] ps ) )
76sbbii 1758 . . . 4  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  [ y  /  z ] ( ph  ->  [ z  /  x ] ps ) )
81sbrim 1949 . . . 4  |-  ( [ y  /  z ] ( ph  ->  [ z  /  x ] ps ) 
<->  ( ph  ->  [ y  /  z ] [
z  /  x ] ps ) )
97, 8bitri 183 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ( ph  ->  ps )  <->  ( ph  ->  [ y  /  z ] [ z  /  x ] ps ) )
105sbrim 1949 . . 3  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  (
ph  ->  [ y  /  x ] ps ) )
114, 9, 103bitr3i 209 . 2  |-  ( (
ph  ->  [ y  / 
z ] [ z  /  x ] ps ) 
<->  ( ph  ->  [ y  /  x ] ps ) )
1211pm5.74ri 180 1  |-  ( ph  ->  ( [ y  / 
z ] [ z  /  x ] ps  <->  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator