Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralbid2 | Unicode version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.) |
Ref | Expression |
---|---|
ralbid2.nf | |
ralbid2.1 |
Ref | Expression |
---|---|
ralbid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbid2.nf | . . 3 | |
2 | ralbid2.1 | . . 3 | |
3 | 1, 2 | albid 1595 | . 2 |
4 | df-ral 2440 | . 2 | |
5 | df-ral 2440 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1333 wnf 1440 wcel 2128 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-ral 2440 |
This theorem is referenced by: strcollnft 13630 |
Copyright terms: Public domain | W3C validator |