ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbid2 Unicode version

Theorem ralbid2 2470
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.)
Hypotheses
Ref Expression
ralbid2.nf  |-  F/ x ph
ralbid2.1  |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch ) ) )
Assertion
Ref Expression
ralbid2  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)

Proof of Theorem ralbid2
StepHypRef Expression
1 ralbid2.nf . . 3  |-  F/ x ph
2 ralbid2.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch ) ) )
31, 2albid 1603 . 2  |-  ( ph  ->  ( A. x ( x  e.  A  ->  ps )  <->  A. x ( x  e.  B  ->  ch ) ) )
4 df-ral 2449 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
5 df-ral 2449 . 2  |-  ( A. x  e.  B  ch  <->  A. x ( x  e.  B  ->  ch )
)
63, 4, 53bitr4g 222 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   F/wnf 1448    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449
This theorem is referenced by:  strcollnft  13866
  Copyright terms: Public domain W3C validator