| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbid2 | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by BJ, 14-Jul-2024.) |
| Ref | Expression |
|---|---|
| ralbid2.nf |
|
| ralbid2.1 |
|
| Ref | Expression |
|---|---|
| ralbid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbid2.nf |
. . 3
| |
| 2 | ralbid2.1 |
. . 3
| |
| 3 | 1, 2 | albid 1629 |
. 2
|
| 4 | df-ral 2480 |
. 2
| |
| 5 | df-ral 2480 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: strcollnft 15640 |
| Copyright terms: Public domain | W3C validator |