ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbidv2 Unicode version

Theorem rexbidv2 2469
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rexbidv2.1  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch ) ) )
Assertion
Ref Expression
rexbidv2  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)    B( x)

Proof of Theorem rexbidv2
StepHypRef Expression
1 rexbidv2.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch ) ) )
21exbidv 1813 . 2  |-  ( ph  ->  ( E. x ( x  e.  A  /\  ps )  <->  E. x ( x  e.  B  /\  ch ) ) )
3 df-rex 2450 . 2  |-  ( E. x  e.  A  ps  <->  E. x ( x  e.  A  /\  ps )
)
4 df-rex 2450 . 2  |-  ( E. x  e.  B  ch  <->  E. x ( x  e.  B  /\  ch )
)
52, 3, 43bitr4g 222 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-rex 2450
This theorem is referenced by:  rexss  3209  rexsupp  5609  isoini  5786  elfi2  6937  ltexpi  7278  rexuz  9518  sscoll2  13870
  Copyright terms: Public domain W3C validator