| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidv2 | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| rexbidv2.1 |
|
| Ref | Expression |
|---|---|
| rexbidv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbidv2.1 |
. . 3
| |
| 2 | 1 | exbidv 1848 |
. 2
|
| 3 | df-rex 2490 |
. 2
| |
| 4 | df-rex 2490 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-rex 2490 |
| This theorem is referenced by: rexss 3260 rexsupp 5704 isoini 5887 elfi2 7074 ltexpi 7450 rexuz 9701 4sqexercise2 12722 4sqlemsdc 12723 sscoll2 15924 |
| Copyright terms: Public domain | W3C validator |