| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexbidv2 | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) | 
| Ref | Expression | 
|---|---|
| rexbidv2.1 | 
 | 
| Ref | Expression | 
|---|---|
| rexbidv2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexbidv2.1 | 
. . 3
 | |
| 2 | 1 | exbidv 1839 | 
. 2
 | 
| 3 | df-rex 2481 | 
. 2
 | |
| 4 | df-rex 2481 | 
. 2
 | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-rex 2481 | 
| This theorem is referenced by: rexss 3250 rexsupp 5686 isoini 5865 elfi2 7038 ltexpi 7404 rexuz 9654 4sqexercise2 12568 4sqlemsdc 12569 sscoll2 15634 | 
| Copyright terms: Public domain | W3C validator |