| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidv2 | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| rexbidv2.1 |
|
| Ref | Expression |
|---|---|
| rexbidv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbidv2.1 |
. . 3
| |
| 2 | 1 | exbidv 1839 |
. 2
|
| 3 | df-rex 2481 |
. 2
| |
| 4 | df-rex 2481 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-rex 2481 |
| This theorem is referenced by: rexss 3251 rexsupp 5689 isoini 5868 elfi2 7047 ltexpi 7421 rexuz 9671 4sqexercise2 12593 4sqlemsdc 12594 sscoll2 15718 |
| Copyright terms: Public domain | W3C validator |