Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbidv2 | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rexbidv2.1 |
Ref | Expression |
---|---|
rexbidv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbidv2.1 | . . 3 | |
2 | 1 | exbidv 1813 | . 2 |
3 | df-rex 2450 | . 2 | |
4 | df-rex 2450 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 wcel 2136 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-rex 2450 |
This theorem is referenced by: rexss 3209 rexsupp 5609 isoini 5786 elfi2 6937 ltexpi 7278 rexuz 9518 sscoll2 13870 |
Copyright terms: Public domain | W3C validator |