Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbidv2 | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rexbidv2.1 |
Ref | Expression |
---|---|
rexbidv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbidv2.1 | . . 3 | |
2 | 1 | exbidv 1818 | . 2 |
3 | df-rex 2454 | . 2 | |
4 | df-rex 2454 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1485 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-rex 2454 |
This theorem is referenced by: rexss 3214 rexsupp 5620 isoini 5797 elfi2 6949 ltexpi 7299 rexuz 9539 sscoll2 14023 |
Copyright terms: Public domain | W3C validator |