Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albid | Unicode version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | |
albid.2 |
Ref | Expression |
---|---|
albid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 | |
2 | 1 | nfri 1512 | . 2 |
3 | albid.2 | . 2 | |
4 | 2, 3 | albidh 1473 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: alexdc 1612 19.32dc 1672 eubid 2026 ralbida 2464 ralbid2 2474 raleqf 2661 intab 3860 bdsepnft 13922 |
Copyright terms: Public domain | W3C validator |