ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  albid Unicode version

Theorem albid 1625
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1  |-  F/ x ph
albid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
albid  |-  ( ph  ->  ( A. x ps  <->  A. x ch ) )

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3  |-  F/ x ph
21nfri 1529 . 2  |-  ( ph  ->  A. x ph )
3 albid.2 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
42, 3albidh 1490 1  |-  ( ph  ->  ( A. x ps  <->  A. x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1361   F/wnf 1470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-4 1520
This theorem depends on definitions:  df-bi 117  df-nf 1471
This theorem is referenced by:  alexdc  1629  19.32dc  1689  eubid  2043  ralbida  2481  ralbid2  2491  raleqf  2679  intab  3885  bdsepnft  14935
  Copyright terms: Public domain W3C validator