![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albid | Unicode version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 |
![]() ![]() ![]() ![]() |
albid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfri 1529 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | albid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | albidh 1490 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-4 1520 |
This theorem depends on definitions: df-bi 117 df-nf 1471 |
This theorem is referenced by: alexdc 1629 19.32dc 1689 eubid 2043 ralbida 2481 ralbid2 2491 raleqf 2679 intab 3885 bdsepnft 14935 |
Copyright terms: Public domain | W3C validator |