| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralnex2 | Unicode version | ||
| Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
| Ref | Expression |
|---|---|
| ralnex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 2485 |
. . 3
| |
| 2 | 1 | ralbii 2503 |
. 2
|
| 3 | ralnex 2485 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |