ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralnex2 Unicode version

Theorem ralnex2 2633
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.)
Assertion
Ref Expression
ralnex2  |-  ( A. x  e.  A  A. y  e.  B  -.  ph  <->  -. 
E. x  e.  A  E. y  e.  B  ph )

Proof of Theorem ralnex2
StepHypRef Expression
1 ralnex 2482 . . 3  |-  ( A. y  e.  B  -.  ph  <->  -. 
E. y  e.  B  ph )
21ralbii 2500 . 2  |-  ( A. x  e.  A  A. y  e.  B  -.  ph  <->  A. x  e.  A  -.  E. y  e.  B  ph )
3 ralnex 2482 . 2  |-  ( A. x  e.  A  -.  E. y  e.  B  ph  <->  -. 
E. x  e.  A  E. y  e.  B  ph )
42, 3bitri 184 1  |-  ( A. x  e.  A  A. y  e.  B  -.  ph  <->  -. 
E. x  e.  A  E. y  e.  B  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wral 2472   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie2 1505  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator