ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralnex2 GIF version

Theorem ralnex2 2647
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.)
Assertion
Ref Expression
ralnex2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem ralnex2
StepHypRef Expression
1 ralnex 2496 . . 3 (∀𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑦𝐵 𝜑)
21ralbii 2514 . 2 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀𝑥𝐴 ¬ ∃𝑦𝐵 𝜑)
3 ralnex 2496 . 2 (∀𝑥𝐴 ¬ ∃𝑦𝐵 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 184 1 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wral 2486  wrex 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie2 1518  ax-4 1534  ax-17 1550
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-ral 2491  df-rex 2492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator