Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralnex2 | GIF version |
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.) |
Ref | Expression |
---|---|
ralnex2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 2454 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 𝜑) | |
2 | 1 | ralbii 2472 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑) |
3 | ralnex 2454 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-4 1498 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |