![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbii | Unicode version |
Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ralbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ralbidv 2396 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | mptru 1308 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-4 1455 ax-17 1474 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-ral 2380 |
This theorem is referenced by: 2ralbii 2402 ralinexa 2421 r3al 2436 r19.26-2 2520 r19.26-3 2521 ralbiim 2525 r19.28av 2527 cbvral2v 2620 cbvral3v 2622 sbralie 2625 ralcom4 2663 reu8 2833 2reuswapdc 2841 r19.12sn 3536 eqsnm 3629 uni0b 3708 uni0c 3709 ssint 3734 iuniin 3770 iuneq2 3776 iunss 3801 ssiinf 3809 iinab 3821 iindif2m 3827 iinin2m 3828 iinuniss 3841 sspwuni 3843 iinpw 3849 dftr3 3970 trint 3981 bnd2 4037 reusv3 4319 reg2exmidlema 4387 setindel 4391 ordsoexmid 4415 zfregfr 4426 tfi 4434 tfis2f 4436 ssrel2 4567 reliun 4598 xpiindim 4614 ralxpf 4623 dfse2 4848 rninxp 4918 dminxp 4919 cnviinm 5016 cnvpom 5017 cnvsom 5018 dffun9 5088 funco 5099 funcnv3 5121 fncnv 5125 funimaexglem 5142 fnres 5175 fnopabg 5182 mptfng 5184 fintm 5244 f1ompt 5503 idref 5590 dff13f 5603 foov 5849 tfr1onlemaccex 6175 tfrcllembxssdm 6183 tfrcllemaccex 6188 oacl 6286 ixpeq2 6536 ixpin 6547 ixpiinm 6548 infmoti 6830 cauappcvgprlemladdrl 7366 axcaucvglemres 7584 dfinfre 8572 suprzclex 9001 supinfneg 9240 infsupneg 9241 cvg1nlemcau 10596 cvg1nlemres 10597 rexfiuz 10601 recvguniq 10607 resqrexlemglsq 10634 resqrexlemsqa 10636 resqrexlemex 10637 clim0 10893 mertenslem2 11144 infssuzex 11437 bezoutlemmain 11479 ennnfoneleminc 11716 ennnfonelemex 11719 ennnfonelemhom 11720 ennnfonelemr 11728 ctinfom 11733 isbasis2g 11994 tgval2 12002 ntreq0 12083 lmres 12198 eltx 12209 decidi 12583 nninfsellemqall 12795 nninfomni 12799 |
Copyright terms: Public domain | W3C validator |