ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmobiia Unicode version

Theorem rmobiia 2655
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmobiia  |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )

Proof of Theorem rmobiia
StepHypRef Expression
1 rmobiia.1 . . . 4  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 450 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32mobii 2051 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  E* x ( x  e.  A  /\  ps )
)
4 df-rmo 2452 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
5 df-rmo 2452 . 2  |-  ( E* x  e.  A  ps  <->  E* x ( x  e.  A  /\  ps )
)
63, 4, 53bitr4i 211 1  |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E*wmo 2015    e. wcel 2136   E*wrmo 2447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-eu 2017  df-mo 2018  df-rmo 2452
This theorem is referenced by:  rmobii  2656
  Copyright terms: Public domain W3C validator