ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmobiia Unicode version

Theorem rmobiia 2684
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmobiia  |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )

Proof of Theorem rmobiia
StepHypRef Expression
1 rmobiia.1 . . . 4  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 454 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32mobii 2079 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  E* x ( x  e.  A  /\  ps )
)
4 df-rmo 2480 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
5 df-rmo 2480 . 2  |-  ( E* x  e.  A  ps  <->  E* x ( x  e.  A  /\  ps )
)
63, 4, 53bitr4i 212 1  |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E*wmo 2043    e. wcel 2164   E*wrmo 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-eu 2045  df-mo 2046  df-rmo 2480
This theorem is referenced by:  rmobii  2685
  Copyright terms: Public domain W3C validator