ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mobii Unicode version

Theorem mobii 2063
Description: Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.)
Hypothesis
Ref Expression
mobii.1  |-  ( ps  <->  ch )
Assertion
Ref Expression
mobii  |-  ( E* x ps  <->  E* x ch )

Proof of Theorem mobii
StepHypRef Expression
1 mobii.1 . . . 4  |-  ( ps  <->  ch )
21a1i 9 . . 3  |-  ( T. 
->  ( ps  <->  ch )
)
32mobidv 2062 . 2  |-  ( T. 
->  ( E* x ps  <->  E* x ch ) )
43mptru 1362 1  |-  ( E* x ps  <->  E* x ch )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1354   E*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-eu 2029  df-mo 2030
This theorem is referenced by:  moaneu  2102  moanmo  2103  2moswapdc  2116  2exeu  2118  rmobiia  2667  rmov  2758  euxfr2dc  2923  rmoan  2938  2rmorex  2944  mosn  3629  dffun9  5246  funopab  5252  funco  5257  funcnv2  5277  funcnv  5278  fun2cnv  5281  fncnv  5283  imadif  5297  fnres  5333  ovi3  6011  oprabex3  6130  axaddf  7867  axmulf  7868  frecuzrdgtcl  10412  frecuzrdgfunlem  10419  fsum3  11395
  Copyright terms: Public domain W3C validator