ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4e Unicode version

Theorem sb4e 1829
Description: One direction of a simplified definition of substitution that unlike sb4 1856 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
sb4e  |-  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  E. y ph ) )

Proof of Theorem sb4e
StepHypRef Expression
1 sb1 1790 . 2  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
2 equs5e 1819 . 2  |-  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  E. y ph ) )
31, 2syl 14 1  |-  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  E. y ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1516   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-11 1530  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-sb 1787
This theorem is referenced by:  hbsb2e  1831
  Copyright terms: Public domain W3C validator