ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4 Unicode version

Theorem sb4 1825
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb4  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )

Proof of Theorem sb4
StepHypRef Expression
1 sb1 1759 . 2  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
2 equs5 1822 . 2  |-  ( -. 
A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )
31, 2syl5 32 1  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756
This theorem is referenced by:  sb4b  1827  hbsb2  1829
  Copyright terms: Public domain W3C validator