ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb2e Unicode version

Theorem hbsb2e 1807
Description: Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
hbsb2e  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] E. y ph )

Proof of Theorem hbsb2e
StepHypRef Expression
1 sb4e 1805 . 2  |-  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  E. y ph ) )
2 sb2 1767 . . 3  |-  ( A. x ( x  =  y  ->  E. y ph )  ->  [ y  /  x ] E. y ph )
32a5i 1543 . 2  |-  ( A. x ( x  =  y  ->  E. y ph )  ->  A. x [ y  /  x ] E. y ph )
41, 3syl 14 1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   E.wex 1492   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-11 1506  ax-4 1510  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-sb 1763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator