![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb4e | GIF version |
Description: One direction of a simplified definition of substitution that unlike sb4 1760 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
sb4e | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1696 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | equs5e 1723 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
3 | 1, 2 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1287 ∃wex 1426 [wsb 1692 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-11 1442 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-sb 1693 |
This theorem is referenced by: hbsb2e 1735 |
Copyright terms: Public domain | W3C validator |