Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ8 | Unicode version |
Description: Elimination of equality from antecedent after substitution. (Contributed by NM, 5-Aug-1993.) (Proof revised by Jim Kingdon, 20-Jan-2018.) |
Ref | Expression |
---|---|
sbequ8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.4 248 | . . 3 | |
2 | simpl 108 | . . . . . 6 | |
3 | pm3.35 345 | . . . . . 6 | |
4 | 2, 3 | jca 304 | . . . . 5 |
5 | simpl 108 | . . . . . 6 | |
6 | pm3.4 331 | . . . . . 6 | |
7 | 5, 6 | jca 304 | . . . . 5 |
8 | 4, 7 | impbii 125 | . . . 4 |
9 | 8 | exbii 1593 | . . 3 |
10 | 1, 9 | anbi12i 456 | . 2 |
11 | df-sb 1751 | . 2 | |
12 | df-sb 1751 | . 2 | |
13 | 10, 11, 12 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbidm 1839 |
Copyright terms: Public domain | W3C validator |