| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbid | GIF version | ||
| Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| sbbid.1 | ⊢ Ⅎ𝑥𝜑 |
| sbbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbbid | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimi 1536 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | spsbbi 1858 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: bezoutlemmain 12190 |
| Copyright terms: Public domain | W3C validator |