| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1dd | Unicode version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 |
|
| sbceq1dd.2 |
|
| Ref | Expression |
|---|---|
| sbceq1dd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1dd.2 |
. 2
| |
| 2 | sbceq1d.1 |
. . 3
| |
| 3 | 2 | sbceq1d 3010 |
. 2
|
| 4 | 1, 3 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 df-sbc 3006 |
| This theorem is referenced by: prmind2 12557 |
| Copyright terms: Public domain | W3C validator |