ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq1d Unicode version

Theorem sbceq1d 3033
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
Hypothesis
Ref Expression
sbceq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sbceq1d  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )

Proof of Theorem sbceq1d
StepHypRef Expression
1 sbceq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 dfsbcq 3030 . 2  |-  ( A  =  B  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-sbc 3029
This theorem is referenced by:  sbceq1dd  3034  rexrnmpt  5778  findcard2  7051  findcard2s  7052  ac6sfi  7060  nn1suc  9129  uzind4s  9785  uzind4s2  9786  fzrevral  10301  fzshftral  10304  wrdind  11254  wrd2ind  11255  cjth  11357  prmind2  12642  issrg  13928  islmod  14255  bj-bdfindes  16312  bj-findes  16344
  Copyright terms: Public domain W3C validator