ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq1d Unicode version

Theorem sbceq1d 2994
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
Hypothesis
Ref Expression
sbceq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sbceq1d  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )

Proof of Theorem sbceq1d
StepHypRef Expression
1 sbceq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 dfsbcq 2991 . 2  |-  ( A  =  B  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-sbc 2990
This theorem is referenced by:  sbceq1dd  2995  rexrnmpt  5705  findcard2  6950  findcard2s  6951  ac6sfi  6959  nn1suc  9009  uzind4s  9664  uzind4s2  9665  fzrevral  10180  fzshftral  10183  cjth  11011  prmind2  12288  issrg  13521  islmod  13847  bj-bdfindes  15595  bj-findes  15627
  Copyright terms: Public domain W3C validator