ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq1d Unicode version

Theorem sbceq1d 2969
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
Hypothesis
Ref Expression
sbceq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sbceq1d  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )

Proof of Theorem sbceq1d
StepHypRef Expression
1 sbceq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 dfsbcq 2966 . 2  |-  ( A  =  B  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )
31, 2syl 14 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   [.wsbc 2964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173  df-sbc 2965
This theorem is referenced by:  sbceq1dd  2970  rexrnmpt  5661  findcard2  6891  findcard2s  6892  ac6sfi  6900  nn1suc  8940  uzind4s  9592  uzind4s2  9593  fzrevral  10107  fzshftral  10110  cjth  10857  prmind2  12122  issrg  13153  islmod  13386  bj-bdfindes  14786  bj-findes  14818
  Copyright terms: Public domain W3C validator