Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq1d | Unicode version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 |
Ref | Expression |
---|---|
sbceq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | . 2 | |
2 | dfsbcq 2957 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-sbc 2956 |
This theorem is referenced by: sbceq1dd 2961 rexrnmpt 5639 findcard2 6867 findcard2s 6868 ac6sfi 6876 nn1suc 8897 uzind4s 9549 uzind4s2 9550 fzrevral 10061 fzshftral 10064 cjth 10810 prmind2 12074 bj-bdfindes 13984 bj-findes 14016 |
Copyright terms: Public domain | W3C validator |