Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq1dd | GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbceq1dd.2 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Ref | Expression |
---|---|
sbceq1dd | ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1dd.2 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
2 | sbceq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | sbceq1d 2960 | . 2 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
4 | 1, 3 | mpbid 146 | 1 ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-sbc 2956 |
This theorem is referenced by: prmind2 12074 |
Copyright terms: Public domain | W3C validator |