| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1dd | GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbceq1dd.2 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
| Ref | Expression |
|---|---|
| sbceq1dd | ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1dd.2 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
| 2 | sbceq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | sbceq1d 2994 | . 2 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: prmind2 12288 |
| Copyright terms: Public domain | W3C validator |