ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqbid Unicode version

Theorem sbceqbid 2970
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbid.1  |-  ( ph  ->  A  =  B )
sbceqbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbceqbid  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)    B( x)

Proof of Theorem sbceqbid
StepHypRef Expression
1 sbceqbid.1 . . 3  |-  ( ph  ->  A  =  B )
2 sbceqbid.2 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
32abbidv 2295 . . 3  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
41, 3eleq12d 2248 . 2  |-  ( ph  ->  ( A  e.  {
x  |  ps }  <->  B  e.  { x  |  ch } ) )
5 df-sbc 2964 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
6 df-sbc 2964 . 2  |-  ( [. B  /  x ]. ch  <->  B  e.  { x  |  ch } )
74, 5, 63bitr4g 223 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   [.wsbc 2963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2964
This theorem is referenced by:  issrg  13148  islmod  13381
  Copyright terms: Public domain W3C validator