ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqbid Unicode version

Theorem sbceqbid 2967
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbid.1  |-  ( ph  ->  A  =  B )
sbceqbid.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbceqbid  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)    B( x)

Proof of Theorem sbceqbid
StepHypRef Expression
1 sbceqbid.1 . . 3  |-  ( ph  ->  A  =  B )
2 sbceqbid.2 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
32abbidv 2293 . . 3  |-  ( ph  ->  { x  |  ps }  =  { x  |  ch } )
41, 3eleq12d 2246 . 2  |-  ( ph  ->  ( A  e.  {
x  |  ps }  <->  B  e.  { x  |  ch } ) )
5 df-sbc 2961 . 2  |-  ( [. A  /  x ]. ps  <->  A  e.  { x  |  ps } )
6 df-sbc 2961 . 2  |-  ( [. B  /  x ]. ch  <->  B  e.  { x  |  ch } )
74, 5, 63bitr4g 223 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. B  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   {cab 2161   [.wsbc 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-sbc 2961
This theorem is referenced by:  issrg  12941
  Copyright terms: Public domain W3C validator