ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmind2 Unicode version

Theorem prmind2 11713
Description: A variation on prmind 11714 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
prmind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
prmind.3  |-  ( x  =  z  ->  ( ph 
<->  th ) )
prmind.4  |-  ( x  =  ( y  x.  z )  ->  ( ph 
<->  ta ) )
prmind.5  |-  ( x  =  A  ->  ( ph 
<->  et ) )
prmind.6  |-  ps
prmind2.7  |-  ( ( x  e.  Prime  /\  A. y  e.  ( 1 ... ( x  - 
1 ) ) ch )  ->  ph )
prmind2.8  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
Assertion
Ref Expression
prmind2  |-  ( A  e.  NN  ->  et )
Distinct variable groups:    x, y    x, A    x, z, ch    et, x    ta, x    th, x    y, z, ph
Allowed substitution hints:    ph( x)    ps( x, y, z)    ch( y)    th( y,
z)    ta( y, z)    et( y, z)    A( y, z)

Proof of Theorem prmind2
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmind.5 . 2  |-  ( x  =  A  ->  ( ph 
<->  et ) )
2 oveq2 5750 . . . 4  |-  ( n  =  1  ->  (
1 ... n )  =  ( 1 ... 1
) )
32raleqdv 2609 . . 3  |-  ( n  =  1  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... 1 ) ph ) )
4 oveq2 5750 . . . 4  |-  ( n  =  k  ->  (
1 ... n )  =  ( 1 ... k
) )
54raleqdv 2609 . . 3  |-  ( n  =  k  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... k ) ph ) )
6 oveq2 5750 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
1 ... n )  =  ( 1 ... (
k  +  1 ) ) )
76raleqdv 2609 . . 3  |-  ( n  =  ( k  +  1 )  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... ( k  +  1 ) ) ph ) )
8 oveq2 5750 . . . 4  |-  ( n  =  A  ->  (
1 ... n )  =  ( 1 ... A
) )
98raleqdv 2609 . . 3  |-  ( n  =  A  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... A ) ph ) )
10 prmind.6 . . . . 5  |-  ps
11 elfz1eq 9770 . . . . . 6  |-  ( x  e.  ( 1 ... 1 )  ->  x  =  1 )
12 prmind.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
1311, 12syl 14 . . . . 5  |-  ( x  e.  ( 1 ... 1 )  ->  ( ph 
<->  ps ) )
1410, 13mpbiri 167 . . . 4  |-  ( x  e.  ( 1 ... 1 )  ->  ph )
1514rgen 2462 . . 3  |-  A. x  e.  ( 1 ... 1
) ph
16 peano2nn 8696 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
1716ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  NN )
1817nncnd 8698 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  CC )
19 elfzuz 9757 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  ->  y  e.  ( ZZ>= `  2 )
)
2019ad2antrl 481 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  (
ZZ>= `  2 ) )
21 eluz2nn 9320 . . . . . . . . . . . . 13  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  NN )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  NN )
2322nncnd 8698 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  CC )
2422nnap0d 8730 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y #  0 )
2518, 23, 24divcanap2d 8519 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  x.  ( ( k  +  1 )  /  y
) )  =  ( k  +  1 ) )
26 simprr 506 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  ||  (
k  +  1 ) )
2722nnzd 9130 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  ZZ )
2822nnne0d 8729 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  =/=  0
)
2917nnzd 9130 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  ZZ )
30 dvdsval2 11408 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  (
k  +  1 )  e.  ZZ )  -> 
( y  ||  (
k  +  1 )  <-> 
( ( k  +  1 )  /  y
)  e.  ZZ ) )
3127, 28, 29, 30syl3anc 1201 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  ||  ( k  +  1 )  <->  ( ( k  +  1 )  / 
y )  e.  ZZ ) )
3226, 31mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  ZZ )
3323mulid2d 7752 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( 1  x.  y )  =  y )
34 elfzle2 9763 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  ->  y  <_  ( ( k  +  1 )  -  1 ) )
3534ad2antrl 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  <_  (
( k  +  1 )  -  1 ) )
36 nncn 8692 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  k  e.  CC )
3736ad2antrr 479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  k  e.  CC )
38 ax-1cn 7681 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
39 pncan 7936 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
4037, 38, 39sylancl 409 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  - 
1 )  =  k )
4135, 40breqtrd 3924 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  <_  k
)
42 nnz 9031 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  ZZ )
4342ad2antrr 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  k  e.  ZZ )
44 zleltp1 9067 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ZZ  /\  k  e.  ZZ )  ->  ( y  <_  k  <->  y  <  ( k  +  1 ) ) )
4527, 43, 44syl2anc 408 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  <_ 
k  <->  y  <  (
k  +  1 ) ) )
4641, 45mpbid 146 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  <  (
k  +  1 ) )
4733, 46eqbrtrd 3920 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( 1  x.  y )  <  (
k  +  1 ) )
48 1red 7749 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  1  e.  RR )
4917nnred 8697 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR )
5022nnred 8697 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  RR )
5122nngt0d 8728 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  0  <  y
)
52 ltmuldiv 8596 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( k  +  1 )  e.  RR  /\  ( y  e.  RR  /\  0  <  y ) )  ->  ( (
1  x.  y )  <  ( k  +  1 )  <->  1  <  ( ( k  +  1 )  /  y ) ) )
5348, 49, 50, 51, 52syl112anc 1205 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( 1  x.  y )  < 
( k  +  1 )  <->  1  <  (
( k  +  1 )  /  y ) ) )
5447, 53mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  1  <  (
( k  +  1 )  /  y ) )
55 eluz2b1 9351 . . . . . . . . . . . 12  |-  ( ( ( k  +  1 )  /  y )  e.  ( ZZ>= `  2
)  <->  ( ( ( k  +  1 )  /  y )  e.  ZZ  /\  1  < 
( ( k  +  1 )  /  y
) ) )
5632, 54, 55sylanbrc 413 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  (
ZZ>= `  2 ) )
57 prmind.2 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
58 simplr 504 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  A. x  e.  ( 1 ... k )
ph )
59 fznn 9824 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
y  e.  ( 1 ... k )  <->  ( y  e.  NN  /\  y  <_ 
k ) ) )
6043, 59syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  e.  ( 1 ... k
)  <->  ( y  e.  NN  /\  y  <_ 
k ) ) )
6122, 41, 60mpbir2and 913 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  ( 1 ... k ) )
6257, 58, 61rspcdva 2768 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ch )
63 vex 2663 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
64 prmind.3 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( ph 
<->  th ) )
6563, 64sbcie 2915 . . . . . . . . . . . . . 14  |-  ( [. z  /  x ]. ph  <->  th )
66 dfsbcq 2884 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  ( [. z  /  x ]. ph  <->  [. ( ( k  +  1 )  / 
y )  /  x ]. ph ) )
6765, 66syl5bbr 193 . . . . . . . . . . . . 13  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  ( th 
<-> 
[. ( ( k  +  1 )  / 
y )  /  x ]. ph ) )
6864cbvralv 2631 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( 1 ... k ) ph  <->  A. z  e.  ( 1 ... k ) th )
6958, 68sylib 121 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  A. z  e.  ( 1 ... k ) th )
7017nnrpd 9437 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR+ )
7122nnrpd 9437 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  RR+ )
7270, 71rpdivcld 9456 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  RR+ )
7372rpgt0d 9441 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  0  <  (
( k  +  1 )  /  y ) )
74 elnnz 9022 . . . . . . . . . . . . . . 15  |-  ( ( ( k  +  1 )  /  y )  e.  NN  <->  ( (
( k  +  1 )  /  y )  e.  ZZ  /\  0  <  ( ( k  +  1 )  /  y
) ) )
7532, 73, 74sylanbrc 413 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  NN )
7617nnap0d 8730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 ) #  0 )
7718, 76dividapd 8513 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
( k  +  1 ) )  =  1 )
78 eluz2gt1 9352 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ZZ>= `  2
)  ->  1  <  y )
7920, 78syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  1  <  y
)
8077, 79eqbrtrd 3920 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
( k  +  1 ) )  <  y
)
8117nngt0d 8728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  0  <  (
k  +  1 ) )
82 ltdiv23 8614 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  +  1 )  e.  RR  /\  ( ( k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) )  /\  ( y  e.  RR  /\  0  < 
y ) )  -> 
( ( ( k  +  1 )  / 
( k  +  1 ) )  <  y  <->  ( ( k  +  1 )  /  y )  <  ( k  +  1 ) ) )
8349, 49, 81, 50, 51, 82syl122anc 1210 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( ( k  +  1 )  /  ( k  +  1 ) )  < 
y  <->  ( ( k  +  1 )  / 
y )  <  (
k  +  1 ) ) )
8480, 83mpbid 146 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  <  (
k  +  1 ) )
85 zleltp1 9067 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  +  1 )  /  y
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( k  +  1 )  / 
y )  <_  k  <->  ( ( k  +  1 )  /  y )  <  ( k  +  1 ) ) )
8632, 43, 85syl2anc 408 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( ( k  +  1 )  /  y )  <_ 
k  <->  ( ( k  +  1 )  / 
y )  <  (
k  +  1 ) ) )
8784, 86mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  <_  k
)
88 fznn 9824 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
( ( k  +  1 )  /  y
)  e.  ( 1 ... k )  <->  ( (
( k  +  1 )  /  y )  e.  NN  /\  (
( k  +  1 )  /  y )  <_  k ) ) )
8943, 88syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( ( k  +  1 )  /  y )  e.  ( 1 ... k
)  <->  ( ( ( k  +  1 )  /  y )  e.  NN  /\  ( ( k  +  1 )  /  y )  <_ 
k ) ) )
9075, 87, 89mpbir2and 913 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  ( 1 ... k ) )
9167, 69, 90rspcdva 2768 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  [. ( ( k  +  1 )  / 
y )  /  x ]. ph )
9262, 91jca 304 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ch  /\  [. ( ( k  +  1 )  /  y
)  /  x ]. ph ) )
9367anbi2d 459 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
( ch  /\  th ) 
<->  ( ch  /\  [. (
( k  +  1 )  /  y )  /  x ]. ph )
) )
94 oveq2 5750 . . . . . . . . . . . . . . 15  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
y  x.  z )  =  ( y  x.  ( ( k  +  1 )  /  y
) ) )
9594sbceq1d 2887 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  ( [. ( y  x.  z
)  /  x ]. ph  <->  [. ( y  x.  (
( k  +  1 )  /  y ) )  /  x ]. ph ) )
9693, 95imbi12d 233 . . . . . . . . . . . . 13  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
( ( ch  /\  th )  ->  [. ( y  x.  z )  /  x ]. ph )  <->  ( ( ch  /\  [. ( ( k  +  1 )  /  y )  /  x ]. ph )  ->  [. ( y  x.  (
( k  +  1 )  /  y ) )  /  x ]. ph ) ) )
9796imbi2d 229 . . . . . . . . . . . 12  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
( y  e.  (
ZZ>= `  2 )  -> 
( ( ch  /\  th )  ->  [. ( y  x.  z )  /  x ]. ph ) )  <-> 
( y  e.  (
ZZ>= `  2 )  -> 
( ( ch  /\  [. ( ( k  +  1 )  /  y
)  /  x ]. ph )  ->  [. ( y  x.  ( ( k  +  1 )  / 
y ) )  /  x ]. ph ) ) ) )
98 prmind2.8 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
9998ancoms 266 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
100 eluzelz 9291 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
101100adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  y  e.  ZZ )
102 eluzelz 9291 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
103102adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  z  e.  ZZ )
104101, 103zmulcld 9137 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( y  x.  z )  e.  ZZ )
105 prmind.4 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  x.  z )  ->  ( ph 
<->  ta ) )
106105sbcieg 2913 . . . . . . . . . . . . . . 15  |-  ( ( y  x.  z )  e.  ZZ  ->  ( [. ( y  x.  z
)  /  x ]. ph  <->  ta ) )
107104, 106syl 14 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( [. ( y  x.  z
)  /  x ]. ph  <->  ta ) )
10899, 107sylibrd 168 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  [. ( y  x.  z
)  /  x ]. ph ) )
109108ex 114 . . . . . . . . . . . 12  |-  ( z  e.  ( ZZ>= `  2
)  ->  ( y  e.  ( ZZ>= `  2 )  ->  ( ( ch  /\  th )  ->  [. ( y  x.  z )  /  x ]. ph ) ) )
11097, 109vtoclga 2726 . . . . . . . . . . 11  |-  ( ( ( k  +  1 )  /  y )  e.  ( ZZ>= `  2
)  ->  ( y  e.  ( ZZ>= `  2 )  ->  ( ( ch  /\  [. ( ( k  +  1 )  /  y
)  /  x ]. ph )  ->  [. ( y  x.  ( ( k  +  1 )  / 
y ) )  /  x ]. ph ) ) )
11156, 20, 92, 110syl3c 63 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  [. ( y  x.  ( ( k  +  1 )  /  y
) )  /  x ]. ph )
11225, 111sbceq1dd 2888 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  [. ( k  +  1 )  /  x ]. ph )
113112rexlimdvaa 2527 . . . . . . . 8  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  ->  [. ( k  +  1 )  /  x ]. ph ) )
114 ralnex 2403 . . . . . . . . 9  |-  ( A. y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  -.  y  ||  ( k  +  1 )  <->  -.  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 ) )
115 simpl 108 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  NN )
116 elnnuz 9318 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
117115, 116sylib 121 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  (
ZZ>= `  1 ) )
118 eluzp1p1 9307 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
119117, 118syl 14 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( k  +  1 )  e.  (
ZZ>= `  ( 1  +  1 ) ) )
120 df-2 8743 . . . . . . . . . . . . 13  |-  2  =  ( 1  +  1 )
121120fveq2i 5392 . . . . . . . . . . . 12  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
122119, 121eleqtrrdi 2211 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( k  +  1 )  e.  (
ZZ>= `  2 ) )
123 isprm3 11711 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  Prime  <->  ( ( k  +  1 )  e.  ( ZZ>= `  2 )  /\  A. y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  -.  y  ||  (
k  +  1 ) ) )
124123baibr 890 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  -.  y  ||  ( k  +  1 )  <->  ( k  +  1 )  e. 
Prime ) )
125122, 124syl 14 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( A. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) )  -.  y  ||  ( k  +  1 )  <->  ( k  +  1 )  e.  Prime ) )
126 simpr 109 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  A. x  e.  ( 1 ... k )
ph )
12757cbvralv 2631 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( 1 ... k ) ph  <->  A. y  e.  ( 1 ... k ) ch )
128126, 127sylib 121 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  A. y  e.  ( 1 ... k ) ch )
129115nncnd 8698 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  CC )
130129, 38, 39sylancl 409 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( ( k  +  1 )  - 
1 )  =  k )
131130oveq2d 5758 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( 1 ... ( ( k  +  1 )  -  1 ) )  =  ( 1 ... k ) )
132131raleqdv 2609 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( A. y  e.  ( 1 ... (
( k  +  1 )  -  1 ) ) ch  <->  A. y  e.  ( 1 ... k
) ch ) )
133128, 132mpbird 166 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  A. y  e.  ( 1 ... ( ( k  +  1 )  -  1 ) ) ch )
134 nfcv 2258 . . . . . . . . . . . 12  |-  F/_ x
( k  +  1 )
135 nfv 1493 . . . . . . . . . . . . 13  |-  F/ x A. y  e.  (
1 ... ( ( k  +  1 )  - 
1 ) ) ch
136 nfsbc1v 2900 . . . . . . . . . . . . 13  |-  F/ x [. ( k  +  1 )  /  x ]. ph
137135, 136nfim 1536 . . . . . . . . . . . 12  |-  F/ x
( A. y  e.  ( 1 ... (
( k  +  1 )  -  1 ) ) ch  ->  [. (
k  +  1 )  /  x ]. ph )
138 oveq1 5749 . . . . . . . . . . . . . . 15  |-  ( x  =  ( k  +  1 )  ->  (
x  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
139138oveq2d 5758 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  +  1 )  ->  (
1 ... ( x  - 
1 ) )  =  ( 1 ... (
( k  +  1 )  -  1 ) ) )
140139raleqdv 2609 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( A. y  e.  (
1 ... ( x  - 
1 ) ) ch  <->  A. y  e.  ( 1 ... ( ( k  +  1 )  - 
1 ) ) ch ) )
141 sbceq1a 2891 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( ph 
<-> 
[. ( k  +  1 )  /  x ]. ph ) )
142140, 141imbi12d 233 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  (
( A. y  e.  ( 1 ... (
x  -  1 ) ) ch  ->  ph )  <->  ( A. y  e.  ( 1 ... ( ( k  +  1 )  -  1 ) ) ch  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
143 prmind2.7 . . . . . . . . . . . . 13  |-  ( ( x  e.  Prime  /\  A. y  e.  ( 1 ... ( x  - 
1 ) ) ch )  ->  ph )
144143ex 114 . . . . . . . . . . . 12  |-  ( x  e.  Prime  ->  ( A. y  e.  ( 1 ... ( x  - 
1 ) ) ch 
->  ph ) )
145134, 137, 142, 144vtoclgaf 2725 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  Prime  ->  ( A. y  e.  ( 1 ... ( ( k  +  1 )  - 
1 ) ) ch 
->  [. ( k  +  1 )  /  x ]. ph ) )
146133, 145syl5com 29 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( ( k  +  1 )  e. 
Prime  ->  [. ( k  +  1 )  /  x ]. ph ) )
147125, 146sylbid 149 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( A. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) )  -.  y  ||  ( k  +  1 )  ->  [. ( k  +  1 )  /  x ]. ph ) )
148114, 147syl5bir 152 . . . . . . . 8  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( -.  E. y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) ) y 
||  ( k  +  1 )  ->  [. (
k  +  1 )  /  x ]. ph )
)
149 2z 9040 . . . . . . . . . . 11  |-  2  e.  ZZ
150149a1i 9 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  2  e.  ZZ )
151115nnzd 9130 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  ZZ )
152151peano2zd 9134 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( k  +  1 )  e.  ZZ )
153 1zzd 9039 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  1  e.  ZZ )
154152, 153zsubcld 9136 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( ( k  +  1 )  - 
1 )  e.  ZZ )
15519, 21syl 14 . . . . . . . . . . 11  |-  ( y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  ->  y  e.  NN )
156 dvdsdc 11413 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  ( k  +  1 )  e.  ZZ )  -> DECID 
y  ||  ( k  +  1 ) )
157155, 152, 156syl2anr 288 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) )  -> DECID  y  ||  ( k  +  1 ) )
158150, 154, 157exfzdc 9972 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  -> DECID  E. y  e.  (
2 ... ( ( k  +  1 )  - 
1 ) ) y 
||  ( k  +  1 ) )
159 exmiddc 806 . . . . . . . . 9  |-  (DECID  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  ->  ( E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  \/  -.  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 ) ) )
160158, 159syl 14 . . . . . . . 8  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  \/  -.  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 ) ) )
161113, 148, 160mpjaod 692 . . . . . . 7  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  [. ( k  +  1 )  /  x ]. ph )
162161ex 114 . . . . . 6  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  [. ( k  +  1 )  /  x ]. ph ) )
163 ralsnsg 3531 . . . . . . 7  |-  ( ( k  +  1 )  e.  NN  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
16416, 163syl 14 . . . . . 6  |-  ( k  e.  NN  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
165162, 164sylibrd 168 . . . . 5  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  A. x  e.  {
( k  +  1 ) } ph )
)
166165ancld 323 . . . 4  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  ( A. x  e.  ( 1 ... k
) ph  /\  A. x  e.  { ( k  +  1 ) } ph ) ) )
167 fzsuc 9804 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) )
168116, 167sylbi 120 . . . . . 6  |-  ( k  e.  NN  ->  (
1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) )
169168raleqdv 2609 . . . . 5  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... ( k  +  1 ) ) ph  <->  A. x  e.  ( ( 1 ... k )  u.  { ( k  +  1 ) } ) ph ) )
170 ralunb 3227 . . . . 5  |-  ( A. x  e.  ( (
1 ... k )  u. 
{ ( k  +  1 ) } )
ph 
<->  ( A. x  e.  ( 1 ... k
) ph  /\  A. x  e.  { ( k  +  1 ) } ph ) )
171169, 170syl6bb 195 . . . 4  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... ( k  +  1 ) ) ph  <->  ( A. x  e.  ( 1 ... k )
ph  /\  A. x  e.  { ( k  +  1 ) } ph ) ) )
172166, 171sylibrd 168 . . 3  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  A. x  e.  ( 1 ... ( k  +  1 ) )
ph ) )
1733, 5, 7, 9, 15, 172nnind 8700 . 2  |-  ( A  e.  NN  ->  A. x  e.  ( 1 ... A
) ph )
174 elfz1end 9790 . . 3  |-  ( A  e.  NN  <->  A  e.  ( 1 ... A
) )
175174biimpi 119 . 2  |-  ( A  e.  NN  ->  A  e.  ( 1 ... A
) )
1761, 173, 175rspcdva 2768 1  |-  ( A  e.  NN  ->  et )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682  DECID wdc 804    = wceq 1316    e. wcel 1465    =/= wne 2285   A.wral 2393   E.wrex 2394   [.wsbc 2882    u. cun 3039   {csn 3497   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588   1c1 7589    + caddc 7591    x. cmul 7593    < clt 7768    <_ cle 7769    - cmin 7901    / cdiv 8399   NNcn 8684   2c2 8735   ZZcz 9012   ZZ>=cuz 9282   ...cfz 9745    || cdvds 11405   Primecprime 11700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-stab 801  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-2o 6282  df-er 6397  df-en 6603  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-q 9368  df-rp 9398  df-fz 9746  df-fzo 9875  df-fl 9998  df-mod 10051  df-seqfrec 10174  df-exp 10248  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726  df-dvds 11406  df-prm 11701
This theorem is referenced by:  prmind  11714
  Copyright terms: Public domain W3C validator