ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmind2 Unicode version

Theorem prmind2 12288
Description: A variation on prmind 12289 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
prmind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
prmind.3  |-  ( x  =  z  ->  ( ph 
<->  th ) )
prmind.4  |-  ( x  =  ( y  x.  z )  ->  ( ph 
<->  ta ) )
prmind.5  |-  ( x  =  A  ->  ( ph 
<->  et ) )
prmind.6  |-  ps
prmind2.7  |-  ( ( x  e.  Prime  /\  A. y  e.  ( 1 ... ( x  - 
1 ) ) ch )  ->  ph )
prmind2.8  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
Assertion
Ref Expression
prmind2  |-  ( A  e.  NN  ->  et )
Distinct variable groups:    x, y    x, A    x, z, ch    et, x    ta, x    th, x    y, z, ph
Allowed substitution hints:    ph( x)    ps( x, y, z)    ch( y)    th( y,
z)    ta( y, z)    et( y, z)    A( y, z)

Proof of Theorem prmind2
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmind.5 . 2  |-  ( x  =  A  ->  ( ph 
<->  et ) )
2 oveq2 5930 . . . 4  |-  ( n  =  1  ->  (
1 ... n )  =  ( 1 ... 1
) )
32raleqdv 2699 . . 3  |-  ( n  =  1  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... 1 ) ph ) )
4 oveq2 5930 . . . 4  |-  ( n  =  k  ->  (
1 ... n )  =  ( 1 ... k
) )
54raleqdv 2699 . . 3  |-  ( n  =  k  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... k ) ph ) )
6 oveq2 5930 . . . 4  |-  ( n  =  ( k  +  1 )  ->  (
1 ... n )  =  ( 1 ... (
k  +  1 ) ) )
76raleqdv 2699 . . 3  |-  ( n  =  ( k  +  1 )  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... ( k  +  1 ) ) ph ) )
8 oveq2 5930 . . . 4  |-  ( n  =  A  ->  (
1 ... n )  =  ( 1 ... A
) )
98raleqdv 2699 . . 3  |-  ( n  =  A  ->  ( A. x  e.  (
1 ... n ) ph  <->  A. x  e.  ( 1 ... A ) ph ) )
10 prmind.6 . . . . 5  |-  ps
11 elfz1eq 10110 . . . . . 6  |-  ( x  e.  ( 1 ... 1 )  ->  x  =  1 )
12 prmind.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
1311, 12syl 14 . . . . 5  |-  ( x  e.  ( 1 ... 1 )  ->  ( ph 
<->  ps ) )
1410, 13mpbiri 168 . . . 4  |-  ( x  e.  ( 1 ... 1 )  ->  ph )
1514rgen 2550 . . 3  |-  A. x  e.  ( 1 ... 1
) ph
16 peano2nn 9002 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
1716ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  NN )
1817nncnd 9004 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  CC )
19 elfzuz 10096 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  ->  y  e.  ( ZZ>= `  2 )
)
2019ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  (
ZZ>= `  2 ) )
21 eluz2nn 9640 . . . . . . . . . . . . 13  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  NN )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  NN )
2322nncnd 9004 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  CC )
2422nnap0d 9036 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y #  0 )
2518, 23, 24divcanap2d 8819 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  x.  ( ( k  +  1 )  /  y
) )  =  ( k  +  1 ) )
26 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  ||  (
k  +  1 ) )
2722nnzd 9447 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  ZZ )
2822nnne0d 9035 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  =/=  0
)
2917nnzd 9447 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  ZZ )
30 dvdsval2 11955 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  (
k  +  1 )  e.  ZZ )  -> 
( y  ||  (
k  +  1 )  <-> 
( ( k  +  1 )  /  y
)  e.  ZZ ) )
3127, 28, 29, 30syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  ||  ( k  +  1 )  <->  ( ( k  +  1 )  / 
y )  e.  ZZ ) )
3226, 31mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  ZZ )
3323mulid2d 8045 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( 1  x.  y )  =  y )
34 elfzle2 10103 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  ->  y  <_  ( ( k  +  1 )  -  1 ) )
3534ad2antrl 490 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  <_  (
( k  +  1 )  -  1 ) )
36 nncn 8998 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  k  e.  CC )
3736ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  k  e.  CC )
38 ax-1cn 7972 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
39 pncan 8232 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
4037, 38, 39sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  - 
1 )  =  k )
4135, 40breqtrd 4059 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  <_  k
)
42 nnz 9345 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  ZZ )
4342ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  k  e.  ZZ )
44 zleltp1 9381 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ZZ  /\  k  e.  ZZ )  ->  ( y  <_  k  <->  y  <  ( k  +  1 ) ) )
4527, 43, 44syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  <_ 
k  <->  y  <  (
k  +  1 ) ) )
4641, 45mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  <  (
k  +  1 ) )
4733, 46eqbrtrd 4055 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( 1  x.  y )  <  (
k  +  1 ) )
48 1red 8041 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  1  e.  RR )
4917nnred 9003 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR )
5022nnred 9003 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  RR )
5122nngt0d 9034 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  0  <  y
)
52 ltmuldiv 8901 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( k  +  1 )  e.  RR  /\  ( y  e.  RR  /\  0  <  y ) )  ->  ( (
1  x.  y )  <  ( k  +  1 )  <->  1  <  ( ( k  +  1 )  /  y ) ) )
5348, 49, 50, 51, 52syl112anc 1253 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( 1  x.  y )  < 
( k  +  1 )  <->  1  <  (
( k  +  1 )  /  y ) ) )
5447, 53mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  1  <  (
( k  +  1 )  /  y ) )
55 eluz2b1 9675 . . . . . . . . . . . 12  |-  ( ( ( k  +  1 )  /  y )  e.  ( ZZ>= `  2
)  <->  ( ( ( k  +  1 )  /  y )  e.  ZZ  /\  1  < 
( ( k  +  1 )  /  y
) ) )
5632, 54, 55sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  (
ZZ>= `  2 ) )
57 prmind.2 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
58 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  A. x  e.  ( 1 ... k )
ph )
59 fznn 10164 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
y  e.  ( 1 ... k )  <->  ( y  e.  NN  /\  y  <_ 
k ) ) )
6043, 59syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( y  e.  ( 1 ... k
)  <->  ( y  e.  NN  /\  y  <_ 
k ) ) )
6122, 41, 60mpbir2and 946 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  ( 1 ... k ) )
6257, 58, 61rspcdva 2873 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ch )
63 vex 2766 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
64 prmind.3 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( ph 
<->  th ) )
6563, 64sbcie 3024 . . . . . . . . . . . . . 14  |-  ( [. z  /  x ]. ph  <->  th )
66 dfsbcq 2991 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  ( [. z  /  x ]. ph  <->  [. ( ( k  +  1 )  / 
y )  /  x ]. ph ) )
6765, 66bitr3id 194 . . . . . . . . . . . . 13  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  ( th 
<-> 
[. ( ( k  +  1 )  / 
y )  /  x ]. ph ) )
6864cbvralv 2729 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( 1 ... k ) ph  <->  A. z  e.  ( 1 ... k ) th )
6958, 68sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  A. z  e.  ( 1 ... k ) th )
7017nnrpd 9769 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR+ )
7122nnrpd 9769 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  y  e.  RR+ )
7270, 71rpdivcld 9789 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  RR+ )
7372rpgt0d 9774 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  0  <  (
( k  +  1 )  /  y ) )
74 elnnz 9336 . . . . . . . . . . . . . . 15  |-  ( ( ( k  +  1 )  /  y )  e.  NN  <->  ( (
( k  +  1 )  /  y )  e.  ZZ  /\  0  <  ( ( k  +  1 )  /  y
) ) )
7532, 73, 74sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  NN )
7617nnap0d 9036 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( k  +  1 ) #  0 )
7718, 76dividapd 8813 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
( k  +  1 ) )  =  1 )
78 eluz2gt1 9676 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ZZ>= `  2
)  ->  1  <  y )
7920, 78syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  1  <  y
)
8077, 79eqbrtrd 4055 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
( k  +  1 ) )  <  y
)
8117nngt0d 9034 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  0  <  (
k  +  1 ) )
82 ltdiv23 8919 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  +  1 )  e.  RR  /\  ( ( k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) )  /\  ( y  e.  RR  /\  0  < 
y ) )  -> 
( ( ( k  +  1 )  / 
( k  +  1 ) )  <  y  <->  ( ( k  +  1 )  /  y )  <  ( k  +  1 ) ) )
8349, 49, 81, 50, 51, 82syl122anc 1258 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( ( k  +  1 )  /  ( k  +  1 ) )  < 
y  <->  ( ( k  +  1 )  / 
y )  <  (
k  +  1 ) ) )
8480, 83mpbid 147 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  <  (
k  +  1 ) )
85 zleltp1 9381 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  +  1 )  /  y
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( k  +  1 )  / 
y )  <_  k  <->  ( ( k  +  1 )  /  y )  <  ( k  +  1 ) ) )
8632, 43, 85syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( ( k  +  1 )  /  y )  <_ 
k  <->  ( ( k  +  1 )  / 
y )  <  (
k  +  1 ) ) )
8784, 86mpbird 167 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  <_  k
)
88 fznn 10164 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
( ( k  +  1 )  /  y
)  e.  ( 1 ... k )  <->  ( (
( k  +  1 )  /  y )  e.  NN  /\  (
( k  +  1 )  /  y )  <_  k ) ) )
8943, 88syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( ( k  +  1 )  /  y )  e.  ( 1 ... k
)  <->  ( ( ( k  +  1 )  /  y )  e.  NN  /\  ( ( k  +  1 )  /  y )  <_ 
k ) ) )
9075, 87, 89mpbir2and 946 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ( k  +  1 )  / 
y )  e.  ( 1 ... k ) )
9167, 69, 90rspcdva 2873 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  [. ( ( k  +  1 )  / 
y )  /  x ]. ph )
9262, 91jca 306 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  ( ch  /\  [. ( ( k  +  1 )  /  y
)  /  x ]. ph ) )
9367anbi2d 464 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
( ch  /\  th ) 
<->  ( ch  /\  [. (
( k  +  1 )  /  y )  /  x ]. ph )
) )
94 oveq2 5930 . . . . . . . . . . . . . . 15  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
y  x.  z )  =  ( y  x.  ( ( k  +  1 )  /  y
) ) )
9594sbceq1d 2994 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  ( [. ( y  x.  z
)  /  x ]. ph  <->  [. ( y  x.  (
( k  +  1 )  /  y ) )  /  x ]. ph ) )
9693, 95imbi12d 234 . . . . . . . . . . . . 13  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
( ( ch  /\  th )  ->  [. ( y  x.  z )  /  x ]. ph )  <->  ( ( ch  /\  [. ( ( k  +  1 )  /  y )  /  x ]. ph )  ->  [. ( y  x.  (
( k  +  1 )  /  y ) )  /  x ]. ph ) ) )
9796imbi2d 230 . . . . . . . . . . . 12  |-  ( z  =  ( ( k  +  1 )  / 
y )  ->  (
( y  e.  (
ZZ>= `  2 )  -> 
( ( ch  /\  th )  ->  [. ( y  x.  z )  /  x ]. ph ) )  <-> 
( y  e.  (
ZZ>= `  2 )  -> 
( ( ch  /\  [. ( ( k  +  1 )  /  y
)  /  x ]. ph )  ->  [. ( y  x.  ( ( k  +  1 )  / 
y ) )  /  x ]. ph ) ) ) )
98 prmind2.8 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
9998ancoms 268 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  ta ) )
100 eluzelz 9610 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
101100adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  y  e.  ZZ )
102 eluzelz 9610 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
103102adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  z  e.  ZZ )
104101, 103zmulcld 9454 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( y  x.  z )  e.  ZZ )
105 prmind.4 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  x.  z )  ->  ( ph 
<->  ta ) )
106105sbcieg 3022 . . . . . . . . . . . . . . 15  |-  ( ( y  x.  z )  e.  ZZ  ->  ( [. ( y  x.  z
)  /  x ]. ph  <->  ta ) )
107104, 106syl 14 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( [. ( y  x.  z
)  /  x ]. ph  <->  ta ) )
10899, 107sylibrd 169 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ( ch  /\  th )  ->  [. ( y  x.  z
)  /  x ]. ph ) )
109108ex 115 . . . . . . . . . . . 12  |-  ( z  e.  ( ZZ>= `  2
)  ->  ( y  e.  ( ZZ>= `  2 )  ->  ( ( ch  /\  th )  ->  [. ( y  x.  z )  /  x ]. ph ) ) )
11097, 109vtoclga 2830 . . . . . . . . . . 11  |-  ( ( ( k  +  1 )  /  y )  e.  ( ZZ>= `  2
)  ->  ( y  e.  ( ZZ>= `  2 )  ->  ( ( ch  /\  [. ( ( k  +  1 )  /  y
)  /  x ]. ph )  ->  [. ( y  x.  ( ( k  +  1 )  / 
y ) )  /  x ]. ph ) ) )
11156, 20, 92, 110syl3c 63 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  [. ( y  x.  ( ( k  +  1 )  /  y
) )  /  x ]. ph )
11225, 111sbceq1dd 2995 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  (
y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  /\  y  ||  ( k  +  1 ) ) )  ->  [. ( k  +  1 )  /  x ]. ph )
113112rexlimdvaa 2615 . . . . . . . 8  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  ->  [. ( k  +  1 )  /  x ]. ph ) )
114 ralnex 2485 . . . . . . . . 9  |-  ( A. y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  -.  y  ||  ( k  +  1 )  <->  -.  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 ) )
115 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  NN )
116 elnnuz 9638 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
117115, 116sylib 122 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  (
ZZ>= `  1 ) )
118 eluzp1p1 9627 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
119117, 118syl 14 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( k  +  1 )  e.  (
ZZ>= `  ( 1  +  1 ) ) )
120 df-2 9049 . . . . . . . . . . . . 13  |-  2  =  ( 1  +  1 )
121120fveq2i 5561 . . . . . . . . . . . 12  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
122119, 121eleqtrrdi 2290 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( k  +  1 )  e.  (
ZZ>= `  2 ) )
123 isprm3 12286 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  Prime  <->  ( ( k  +  1 )  e.  ( ZZ>= `  2 )  /\  A. y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  -.  y  ||  (
k  +  1 ) ) )
124123baibr 921 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) )  -.  y  ||  ( k  +  1 )  <->  ( k  +  1 )  e. 
Prime ) )
125122, 124syl 14 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( A. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) )  -.  y  ||  ( k  +  1 )  <->  ( k  +  1 )  e.  Prime ) )
126 simpr 110 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  A. x  e.  ( 1 ... k )
ph )
12757cbvralv 2729 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( 1 ... k ) ph  <->  A. y  e.  ( 1 ... k ) ch )
128126, 127sylib 122 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  A. y  e.  ( 1 ... k ) ch )
129115nncnd 9004 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  CC )
130129, 38, 39sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( ( k  +  1 )  - 
1 )  =  k )
131130oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( 1 ... ( ( k  +  1 )  -  1 ) )  =  ( 1 ... k ) )
132131raleqdv 2699 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( A. y  e.  ( 1 ... (
( k  +  1 )  -  1 ) ) ch  <->  A. y  e.  ( 1 ... k
) ch ) )
133128, 132mpbird 167 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  A. y  e.  ( 1 ... ( ( k  +  1 )  -  1 ) ) ch )
134 nfcv 2339 . . . . . . . . . . . 12  |-  F/_ x
( k  +  1 )
135 nfv 1542 . . . . . . . . . . . . 13  |-  F/ x A. y  e.  (
1 ... ( ( k  +  1 )  - 
1 ) ) ch
136 nfsbc1v 3008 . . . . . . . . . . . . 13  |-  F/ x [. ( k  +  1 )  /  x ]. ph
137135, 136nfim 1586 . . . . . . . . . . . 12  |-  F/ x
( A. y  e.  ( 1 ... (
( k  +  1 )  -  1 ) ) ch  ->  [. (
k  +  1 )  /  x ]. ph )
138 oveq1 5929 . . . . . . . . . . . . . . 15  |-  ( x  =  ( k  +  1 )  ->  (
x  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
139138oveq2d 5938 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  +  1 )  ->  (
1 ... ( x  - 
1 ) )  =  ( 1 ... (
( k  +  1 )  -  1 ) ) )
140139raleqdv 2699 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( A. y  e.  (
1 ... ( x  - 
1 ) ) ch  <->  A. y  e.  ( 1 ... ( ( k  +  1 )  - 
1 ) ) ch ) )
141 sbceq1a 2999 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( ph 
<-> 
[. ( k  +  1 )  /  x ]. ph ) )
142140, 141imbi12d 234 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  (
( A. y  e.  ( 1 ... (
x  -  1 ) ) ch  ->  ph )  <->  ( A. y  e.  ( 1 ... ( ( k  +  1 )  -  1 ) ) ch  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
143 prmind2.7 . . . . . . . . . . . . 13  |-  ( ( x  e.  Prime  /\  A. y  e.  ( 1 ... ( x  - 
1 ) ) ch )  ->  ph )
144143ex 115 . . . . . . . . . . . 12  |-  ( x  e.  Prime  ->  ( A. y  e.  ( 1 ... ( x  - 
1 ) ) ch 
->  ph ) )
145134, 137, 142, 144vtoclgaf 2829 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  Prime  ->  ( A. y  e.  ( 1 ... ( ( k  +  1 )  - 
1 ) ) ch 
->  [. ( k  +  1 )  /  x ]. ph ) )
146133, 145syl5com 29 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( ( k  +  1 )  e. 
Prime  ->  [. ( k  +  1 )  /  x ]. ph ) )
147125, 146sylbid 150 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( A. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) )  -.  y  ||  ( k  +  1 )  ->  [. ( k  +  1 )  /  x ]. ph ) )
148114, 147biimtrrid 153 . . . . . . . 8  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( -.  E. y  e.  ( 2 ... ( ( k  +  1 )  - 
1 ) ) y 
||  ( k  +  1 )  ->  [. (
k  +  1 )  /  x ]. ph )
)
149 2z 9354 . . . . . . . . . . 11  |-  2  e.  ZZ
150149a1i 9 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  2  e.  ZZ )
151115nnzd 9447 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  k  e.  ZZ )
152151peano2zd 9451 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( k  +  1 )  e.  ZZ )
153 1zzd 9353 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  1  e.  ZZ )
154152, 153zsubcld 9453 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( ( k  +  1 )  - 
1 )  e.  ZZ )
15519, 21syl 14 . . . . . . . . . . 11  |-  ( y  e.  ( 2 ... ( ( k  +  1 )  -  1 ) )  ->  y  e.  NN )
156 dvdsdc 11963 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  ( k  +  1 )  e.  ZZ )  -> DECID 
y  ||  ( k  +  1 ) )
157155, 152, 156syl2anr 290 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\ 
A. x  e.  ( 1 ... k )
ph )  /\  y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) )  -> DECID  y  ||  ( k  +  1 ) )
158150, 154, 157exfzdc 10316 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  -> DECID  E. y  e.  (
2 ... ( ( k  +  1 )  - 
1 ) ) y 
||  ( k  +  1 ) )
159 exmiddc 837 . . . . . . . . 9  |-  (DECID  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  ->  ( E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  \/  -.  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 ) ) )
160158, 159syl 14 . . . . . . . 8  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  ( E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 )  \/  -.  E. y  e.  ( 2 ... (
( k  +  1 )  -  1 ) ) y  ||  (
k  +  1 ) ) )
161113, 148, 160mpjaod 719 . . . . . . 7  |-  ( ( k  e.  NN  /\  A. x  e.  ( 1 ... k ) ph )  ->  [. ( k  +  1 )  /  x ]. ph )
162161ex 115 . . . . . 6  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  [. ( k  +  1 )  /  x ]. ph ) )
163 ralsnsg 3659 . . . . . . 7  |-  ( ( k  +  1 )  e.  NN  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
16416, 163syl 14 . . . . . 6  |-  ( k  e.  NN  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
165162, 164sylibrd 169 . . . . 5  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  A. x  e.  {
( k  +  1 ) } ph )
)
166165ancld 325 . . . 4  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  ( A. x  e.  ( 1 ... k
) ph  /\  A. x  e.  { ( k  +  1 ) } ph ) ) )
167 fzsuc 10144 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) )
168116, 167sylbi 121 . . . . . 6  |-  ( k  e.  NN  ->  (
1 ... ( k  +  1 ) )  =  ( ( 1 ... k )  u.  {
( k  +  1 ) } ) )
169168raleqdv 2699 . . . . 5  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... ( k  +  1 ) ) ph  <->  A. x  e.  ( ( 1 ... k )  u.  { ( k  +  1 ) } ) ph ) )
170 ralunb 3344 . . . . 5  |-  ( A. x  e.  ( (
1 ... k )  u. 
{ ( k  +  1 ) } )
ph 
<->  ( A. x  e.  ( 1 ... k
) ph  /\  A. x  e.  { ( k  +  1 ) } ph ) )
171169, 170bitrdi 196 . . . 4  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... ( k  +  1 ) ) ph  <->  ( A. x  e.  ( 1 ... k )
ph  /\  A. x  e.  { ( k  +  1 ) } ph ) ) )
172166, 171sylibrd 169 . . 3  |-  ( k  e.  NN  ->  ( A. x  e.  (
1 ... k ) ph  ->  A. x  e.  ( 1 ... ( k  +  1 ) )
ph ) )
1733, 5, 7, 9, 15, 172nnind 9006 . 2  |-  ( A  e.  NN  ->  A. x  e.  ( 1 ... A
) ph )
174 elfz1end 10130 . . 3  |-  ( A  e.  NN  <->  A  e.  ( 1 ... A
) )
175174biimpi 120 . 2  |-  ( A  e.  NN  ->  A  e.  ( 1 ... A
) )
1761, 173, 175rspcdva 2873 1  |-  ( A  e.  NN  ->  et )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   [.wsbc 2989    u. cun 3155   {csn 3622   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   NNcn 8990   2c2 9041   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    || cdvds 11952   Primecprime 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-prm 12276
This theorem is referenced by:  prmind  12289  4sqlem19  12578
  Copyright terms: Public domain W3C validator