ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbid2 Unicode version

Theorem sbid2 1830
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbid2.1  |-  F/ x ph
Assertion
Ref Expression
sbid2  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )

Proof of Theorem sbid2
StepHypRef Expression
1 sbid2.1 . . 3  |-  F/ x ph
21nfri 1499 . 2  |-  ( ph  ->  A. x ph )
32sbid2h 1829 1  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   F/wnf 1440   [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743
This theorem is referenced by:  sbco4lem  1986
  Copyright terms: Public domain W3C validator