![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbid2 | Unicode version |
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
sbid2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sbid2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid2.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfri 1482 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | sbid2h 1803 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-11 1467 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-sb 1719 |
This theorem is referenced by: sbco4lem 1957 |
Copyright terms: Public domain | W3C validator |