| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbidm | Unicode version | ||
| Description: An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| sbidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1777 |
. . . . 5
| |
| 2 | 1 | simplbi 274 |
. . . 4
|
| 3 | 2 | sbimi 1778 |
. . 3
|
| 4 | sbequ8 1861 |
. . 3
| |
| 5 | 3, 4 | sylibr 134 |
. 2
|
| 6 | ax-1 6 |
. . 3
| |
| 7 | sb1 1780 |
. . . 4
| |
| 8 | pm4.24 395 |
. . . . . . . 8
| |
| 9 | ax-ie1 1507 |
. . . . . . . . 9
| |
| 10 | 9 | 19.41h 1699 |
. . . . . . . 8
|
| 11 | 8, 10 | bitr4i 187 |
. . . . . . 7
|
| 12 | ax-1 6 |
. . . . . . . . . 10
| |
| 13 | 12 | anim2i 342 |
. . . . . . . . 9
|
| 14 | 13 | anim1i 340 |
. . . . . . . 8
|
| 15 | 14 | eximi 1614 |
. . . . . . 7
|
| 16 | 11, 15 | sylbi 121 |
. . . . . 6
|
| 17 | anass 401 |
. . . . . . 7
| |
| 18 | 17 | exbii 1619 |
. . . . . 6
|
| 19 | 16, 18 | sylib 122 |
. . . . 5
|
| 20 | 1 | anbi2i 457 |
. . . . . 6
|
| 21 | 20 | exbii 1619 |
. . . . 5
|
| 22 | 19, 21 | sylibr 134 |
. . . 4
|
| 23 | 7, 22 | syl 14 |
. . 3
|
| 24 | df-sb 1777 |
. . 3
| |
| 25 | 6, 23, 24 | sylanbrc 417 |
. 2
|
| 26 | 5, 25 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |