| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbidm | Unicode version | ||
| Description: An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| sbidm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-sb 1777 | 
. . . . 5
 | |
| 2 | 1 | simplbi 274 | 
. . . 4
 | 
| 3 | 2 | sbimi 1778 | 
. . 3
 | 
| 4 | sbequ8 1861 | 
. . 3
 | |
| 5 | 3, 4 | sylibr 134 | 
. 2
 | 
| 6 | ax-1 6 | 
. . 3
 | |
| 7 | sb1 1780 | 
. . . 4
 | |
| 8 | pm4.24 395 | 
. . . . . . . 8
 | |
| 9 | ax-ie1 1507 | 
. . . . . . . . 9
 | |
| 10 | 9 | 19.41h 1699 | 
. . . . . . . 8
 | 
| 11 | 8, 10 | bitr4i 187 | 
. . . . . . 7
 | 
| 12 | ax-1 6 | 
. . . . . . . . . 10
 | |
| 13 | 12 | anim2i 342 | 
. . . . . . . . 9
 | 
| 14 | 13 | anim1i 340 | 
. . . . . . . 8
 | 
| 15 | 14 | eximi 1614 | 
. . . . . . 7
 | 
| 16 | 11, 15 | sylbi 121 | 
. . . . . 6
 | 
| 17 | anass 401 | 
. . . . . . 7
 | |
| 18 | 17 | exbii 1619 | 
. . . . . 6
 | 
| 19 | 16, 18 | sylib 122 | 
. . . . 5
 | 
| 20 | 1 | anbi2i 457 | 
. . . . . 6
 | 
| 21 | 20 | exbii 1619 | 
. . . . 5
 | 
| 22 | 19, 21 | sylibr 134 | 
. . . 4
 | 
| 23 | 7, 22 | syl 14 | 
. . 3
 | 
| 24 | df-sb 1777 | 
. . 3
 | |
| 25 | 6, 23, 24 | sylanbrc 417 | 
. 2
 | 
| 26 | 5, 25 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |