| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbid2h | Unicode version | ||
| Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbid2h.1 |
|
| Ref | Expression |
|---|---|
| sbid2h |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid2h.1 |
. . 3
| |
| 2 | 1 | sbcof2 1856 |
. 2
|
| 3 | 1 | sbh 1822 |
. 2
|
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 |
| This theorem is referenced by: sbid2 1896 sb5rf 1898 sb6rf 1899 sbid2v 2047 |
| Copyright terms: Public domain | W3C validator |