Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbid2h | Unicode version |
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbid2h.1 |
Ref | Expression |
---|---|
sbid2h |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid2h.1 | . . 3 | |
2 | 1 | sbcof2 1803 | . 2 |
3 | 1 | sbh 1769 | . 2 |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sbid2 1843 sb5rf 1845 sb6rf 1846 sbid2v 1989 |
Copyright terms: Public domain | W3C validator |