Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbid2h | Unicode version |
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbid2h.1 |
Ref | Expression |
---|---|
sbid2h |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid2h.1 | . . 3 | |
2 | 1 | sbcof2 1787 | . 2 |
3 | 1 | sbh 1753 | . 2 |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1330 wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-sb 1740 |
This theorem is referenced by: sbid2 1827 sb5rf 1829 sb6rf 1830 sbid2v 1973 |
Copyright terms: Public domain | W3C validator |