ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbid2h Unicode version

Theorem sbid2h 1895
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sbid2h.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
sbid2h  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )

Proof of Theorem sbid2h
StepHypRef Expression
1 sbid2h.1 . . 3  |-  ( ph  ->  A. x ph )
21sbcof2 1856 . 2  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  [ y  /  x ] ph )
31sbh 1822 . 2  |-  ( [ y  /  x ] ph 
<-> 
ph )
42, 3bitri 184 1  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-sb 1809
This theorem is referenced by:  sbid2  1896  sb5rf  1898  sb6rf  1899  sbid2v  2047
  Copyright terms: Public domain W3C validator