Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmid | Unicode version |
Description: The axiom of choice
implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function provides a value when is inhabited (as opposed to nonempty as in some statements of the axiom of choice). Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7120 and df-exmid 4151 syntaxes, see exmidac 7123. (Contributed by Jim Kingdon, 4-Aug-2019.) |
Ref | Expression |
---|---|
acexmid.choice |
Ref | Expression |
---|---|
acexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1505 | . . . . . . . . . . . . . 14 | |
2 | 1 | sb8eu 2016 | . . . . . . . . . . . . 13 |
3 | eleq12 2219 | . . . . . . . . . . . . . . . . . . . 20 | |
4 | 3 | ancoms 266 | . . . . . . . . . . . . . . . . . . 19 |
5 | 4 | 3adant3 1002 | . . . . . . . . . . . . . . . . . 18 |
6 | eleq12 2219 | . . . . . . . . . . . . . . . . . . . . 21 | |
7 | 6 | 3ad2antl1 1144 | . . . . . . . . . . . . . . . . . . . 20 |
8 | eleq12 2219 | . . . . . . . . . . . . . . . . . . . . 21 | |
9 | 8 | 3ad2antl2 1145 | . . . . . . . . . . . . . . . . . . . 20 |
10 | 7, 9 | anbi12d 465 | . . . . . . . . . . . . . . . . . . 19 |
11 | simpl3 987 | . . . . . . . . . . . . . . . . . . 19 | |
12 | 10, 11 | cbvrexdva2 2685 | . . . . . . . . . . . . . . . . . 18 |
13 | 5, 12 | anbi12d 465 | . . . . . . . . . . . . . . . . 17 |
14 | 13 | 3com23 1188 | . . . . . . . . . . . . . . . 16 |
15 | 14 | 3expa 1182 | . . . . . . . . . . . . . . 15 |
16 | 15 | sbiedv 1766 | . . . . . . . . . . . . . 14 |
17 | 16 | eubidv 2011 | . . . . . . . . . . . . 13 |
18 | 2, 17 | syl5bb 191 | . . . . . . . . . . . 12 |
19 | df-reu 2439 | . . . . . . . . . . . 12 | |
20 | df-reu 2439 | . . . . . . . . . . . 12 | |
21 | 18, 19, 20 | 3bitr4g 222 | . . . . . . . . . . 11 |
22 | 21 | adantr 274 | . . . . . . . . . 10 |
23 | simpll 519 | . . . . . . . . . 10 | |
24 | 22, 23 | cbvraldva2 2684 | . . . . . . . . 9 |
25 | 24 | ancoms 266 | . . . . . . . 8 |
26 | 25 | adantll 468 | . . . . . . 7 |
27 | simpll 519 | . . . . . . 7 | |
28 | 26, 27 | cbvraldva2 2684 | . . . . . 6 |
29 | 28 | cbvexdva 1906 | . . . . 5 |
30 | 29 | cbvalv 1894 | . . . 4 |
31 | acexmid.choice | . . . 4 | |
32 | 30, 31 | mpgbir 1430 | . . 3 |
33 | 32 | spi 1513 | . 2 |
34 | 33 | acexmidlemv 5812 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 698 w3a 963 wal 1330 wex 1469 wsb 1739 weu 2003 wral 2432 wrex 2433 wreu 2434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-uni 3769 df-tr 4059 df-iord 4321 df-on 4323 df-suc 4326 df-iota 5128 df-riota 5770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |