ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmid Unicode version

Theorem acexmid 5993
Description: The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function  y provides a value when  z is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7376 and df-exmid 4278 syntaxes, see exmidac 7379. (Contributed by Jim Kingdon, 4-Aug-2019.)

Hypothesis
Ref Expression
acexmid.choice  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
Assertion
Ref Expression
acexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    x, y, z, w, v, u
Allowed substitution hints:    ph( x, y, z, w, v, u)

Proof of Theorem acexmid
Dummy variables  a  b  c  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1574 . . . . . . . . . . . . . 14  |-  F/ v ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) )
21sb8eu 2090 . . . . . . . . . . . . 13  |-  ( E! f ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) )  <->  E! v [ v  /  f ] ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) ) )
3 eleq12 2294 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  =  v  /\  c  =  z )  ->  ( f  e.  c  <-> 
v  e.  z ) )
43ancoms 268 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  =  z  /\  f  =  v )  ->  ( f  e.  c  <-> 
v  e.  z ) )
543adant3 1041 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  =  z  /\  f  =  v  /\  b  =  y )  ->  ( f  e.  c  <-> 
v  e.  z ) )
6 eleq12 2294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( c  =  z  /\  e  =  u )  ->  ( c  e.  e  <-> 
z  e.  u ) )
763ad2antl1 1183 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c  =  z  /\  f  =  v  /\  b  =  y )  /\  e  =  u )  ->  (
c  e.  e  <->  z  e.  u ) )
8 eleq12 2294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  =  v  /\  e  =  u )  ->  ( f  e.  e  <-> 
v  e.  u ) )
983ad2antl2 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c  =  z  /\  f  =  v  /\  b  =  y )  /\  e  =  u )  ->  (
f  e.  e  <->  v  e.  u ) )
107, 9anbi12d 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( c  =  z  /\  f  =  v  /\  b  =  y )  /\  e  =  u )  ->  (
( c  e.  e  /\  f  e.  e )  <->  ( z  e.  u  /\  v  e.  u ) ) )
11 simpl3 1026 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( c  =  z  /\  f  =  v  /\  b  =  y )  /\  e  =  u )  ->  b  =  y )
1210, 11cbvrexdva2 2773 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  =  z  /\  f  =  v  /\  b  =  y )  ->  ( E. e  e.  b  ( c  e.  e  /\  f  e.  e )  <->  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
135, 12anbi12d 473 . . . . . . . . . . . . . . . . 17  |-  ( ( c  =  z  /\  f  =  v  /\  b  =  y )  ->  ( ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) )  <->  ( v  e.  z  /\  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) ) )
14133com23 1233 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  z  /\  b  =  y  /\  f  =  v )  ->  ( ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) )  <->  ( v  e.  z  /\  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) ) )
15143expa 1227 . . . . . . . . . . . . . . 15  |-  ( ( ( c  =  z  /\  b  =  y )  /\  f  =  v )  ->  (
( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) )  <->  ( v  e.  z  /\  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) ) )
1615sbiedv 1835 . . . . . . . . . . . . . 14  |-  ( ( c  =  z  /\  b  =  y )  ->  ( [ v  / 
f ] ( f  e.  c  /\  E. e  e.  b  (
c  e.  e  /\  f  e.  e )
)  <->  ( v  e.  z  /\  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) ) )
1716eubidv 2085 . . . . . . . . . . . . 13  |-  ( ( c  =  z  /\  b  =  y )  ->  ( E! v [ v  /  f ] ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) )  <->  E! v
( v  e.  z  /\  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) ) )
182, 17bitrid 192 . . . . . . . . . . . 12  |-  ( ( c  =  z  /\  b  =  y )  ->  ( E! f ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e )
)  <->  E! v ( v  e.  z  /\  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
) ) )
19 df-reu 2515 . . . . . . . . . . . 12  |-  ( E! f  e.  c  E. e  e.  b  (
c  e.  e  /\  f  e.  e )  <->  E! f ( f  e.  c  /\  E. e  e.  b  ( c  e.  e  /\  f  e.  e ) ) )
20 df-reu 2515 . . . . . . . . . . . 12  |-  ( E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  E! v ( v  e.  z  /\  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2118, 19, 203bitr4g 223 . . . . . . . . . . 11  |-  ( ( c  =  z  /\  b  =  y )  ->  ( E! f  e.  c  E. e  e.  b  ( c  e.  e  /\  f  e.  e )  <->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( c  =  z  /\  b  =  y )  /\  d  =  w )  ->  ( E! f  e.  c  E. e  e.  b 
( c  e.  e  /\  f  e.  e )  <->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
23 simpll 527 . . . . . . . . . 10  |-  ( ( ( c  =  z  /\  b  =  y )  /\  d  =  w )  ->  c  =  z )
2422, 23cbvraldva2 2772 . . . . . . . . 9  |-  ( ( c  =  z  /\  b  =  y )  ->  ( A. d  e.  c  E! f  e.  c  E. e  e.  b  ( c  e.  e  /\  f  e.  e )  <->  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2524ancoms 268 . . . . . . . 8  |-  ( ( b  =  y  /\  c  =  z )  ->  ( A. d  e.  c  E! f  e.  c  E. e  e.  b  ( c  e.  e  /\  f  e.  e )  <->  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2625adantll 476 . . . . . . 7  |-  ( ( ( a  =  x  /\  b  =  y )  /\  c  =  z )  ->  ( A. d  e.  c  E! f  e.  c  E. e  e.  b 
( c  e.  e  /\  f  e.  e )  <->  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
27 simpll 527 . . . . . . 7  |-  ( ( ( a  =  x  /\  b  =  y )  /\  c  =  z )  ->  a  =  x )
2826, 27cbvraldva2 2772 . . . . . 6  |-  ( ( a  =  x  /\  b  =  y )  ->  ( A. c  e.  a  A. d  e.  c  E! f  e.  c  E. e  e.  b  ( c  e.  e  /\  f  e.  e )  <->  A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2928cbvexdva 1976 . . . . 5  |-  ( a  =  x  ->  ( E. b A. c  e.  a  A. d  e.  c  E! f  e.  c  E. e  e.  b  ( c  e.  e  /\  f  e.  e )  <->  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
) ) )
3029cbvalv 1964 . . . 4  |-  ( A. a E. b A. c  e.  a  A. d  e.  c  E! f  e.  c  E. e  e.  b  ( c  e.  e  /\  f  e.  e )  <->  A. x E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )
31 acexmid.choice . . . 4  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
3230, 31mpgbir 1499 . . 3  |-  A. a E. b A. c  e.  a  A. d  e.  c  E! f  e.  c  E. e  e.  b  ( c  e.  e  /\  f  e.  e )
3332spi 1582 . 2  |-  E. b A. c  e.  a  A. d  e.  c  E! f  e.  c  E. e  e.  b 
( c  e.  e  /\  f  e.  e )
3433acexmidlemv 5992 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002   A.wal 1393   E.wex 1538   [wsb 1808   E!weu 2077   A.wral 2508   E.wrex 2509   E!wreu 2510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456  df-suc 4459  df-iota 5274  df-riota 5947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator