Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmid | Unicode version |
Description: The axiom of choice
implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function provides a value when is inhabited (as opposed to nonempty as in some statements of the axiom of choice). Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7162 and df-exmid 4174 syntaxes, see exmidac 7165. (Contributed by Jim Kingdon, 4-Aug-2019.) |
Ref | Expression |
---|---|
acexmid.choice |
Ref | Expression |
---|---|
acexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . . . . . . . . . . . 14 | |
2 | 1 | sb8eu 2027 | . . . . . . . . . . . . 13 |
3 | eleq12 2231 | . . . . . . . . . . . . . . . . . . . 20 | |
4 | 3 | ancoms 266 | . . . . . . . . . . . . . . . . . . 19 |
5 | 4 | 3adant3 1007 | . . . . . . . . . . . . . . . . . 18 |
6 | eleq12 2231 | . . . . . . . . . . . . . . . . . . . . 21 | |
7 | 6 | 3ad2antl1 1149 | . . . . . . . . . . . . . . . . . . . 20 |
8 | eleq12 2231 | . . . . . . . . . . . . . . . . . . . . 21 | |
9 | 8 | 3ad2antl2 1150 | . . . . . . . . . . . . . . . . . . . 20 |
10 | 7, 9 | anbi12d 465 | . . . . . . . . . . . . . . . . . . 19 |
11 | simpl3 992 | . . . . . . . . . . . . . . . . . . 19 | |
12 | 10, 11 | cbvrexdva2 2700 | . . . . . . . . . . . . . . . . . 18 |
13 | 5, 12 | anbi12d 465 | . . . . . . . . . . . . . . . . 17 |
14 | 13 | 3com23 1199 | . . . . . . . . . . . . . . . 16 |
15 | 14 | 3expa 1193 | . . . . . . . . . . . . . . 15 |
16 | 15 | sbiedv 1777 | . . . . . . . . . . . . . 14 |
17 | 16 | eubidv 2022 | . . . . . . . . . . . . 13 |
18 | 2, 17 | syl5bb 191 | . . . . . . . . . . . 12 |
19 | df-reu 2451 | . . . . . . . . . . . 12 | |
20 | df-reu 2451 | . . . . . . . . . . . 12 | |
21 | 18, 19, 20 | 3bitr4g 222 | . . . . . . . . . . 11 |
22 | 21 | adantr 274 | . . . . . . . . . 10 |
23 | simpll 519 | . . . . . . . . . 10 | |
24 | 22, 23 | cbvraldva2 2699 | . . . . . . . . 9 |
25 | 24 | ancoms 266 | . . . . . . . 8 |
26 | 25 | adantll 468 | . . . . . . 7 |
27 | simpll 519 | . . . . . . 7 | |
28 | 26, 27 | cbvraldva2 2699 | . . . . . 6 |
29 | 28 | cbvexdva 1917 | . . . . 5 |
30 | 29 | cbvalv 1905 | . . . 4 |
31 | acexmid.choice | . . . 4 | |
32 | 30, 31 | mpgbir 1441 | . . 3 |
33 | 32 | spi 1524 | . 2 |
34 | 33 | acexmidlemv 5840 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 698 w3a 968 wal 1341 wex 1480 wsb 1750 weu 2014 wral 2444 wrex 2445 wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iota 5153 df-riota 5798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |