| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmid | Unicode version | ||
| Description: The axiom of choice
implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath
Proof Explorer (version of 3-Aug-2019). In particular, note that the
choice function Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7331 and df-exmid 4244 syntaxes, see exmidac 7334. (Contributed by Jim Kingdon, 4-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmid.choice |
|
| Ref | Expression |
|---|---|
| acexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. . . . . . . . . . . . . 14
| |
| 2 | 1 | sb8eu 2068 |
. . . . . . . . . . . . 13
|
| 3 | eleq12 2271 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 4 | 3 | ancoms 268 |
. . . . . . . . . . . . . . . . . . 19
|
| 5 | 4 | 3adant3 1020 |
. . . . . . . . . . . . . . . . . 18
|
| 6 | eleq12 2271 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 7 | 6 | 3ad2antl1 1162 |
. . . . . . . . . . . . . . . . . . . 20
|
| 8 | eleq12 2271 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 9 | 8 | 3ad2antl2 1163 |
. . . . . . . . . . . . . . . . . . . 20
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . . . . . . . . . . . . 19
|
| 11 | simpl3 1005 |
. . . . . . . . . . . . . . . . . . 19
| |
| 12 | 10, 11 | cbvrexdva2 2747 |
. . . . . . . . . . . . . . . . . 18
|
| 13 | 5, 12 | anbi12d 473 |
. . . . . . . . . . . . . . . . 17
|
| 14 | 13 | 3com23 1212 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | 3expa 1206 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | sbiedv 1813 |
. . . . . . . . . . . . . 14
|
| 17 | 16 | eubidv 2063 |
. . . . . . . . . . . . 13
|
| 18 | 2, 17 | bitrid 192 |
. . . . . . . . . . . 12
|
| 19 | df-reu 2492 |
. . . . . . . . . . . 12
| |
| 20 | df-reu 2492 |
. . . . . . . . . . . 12
| |
| 21 | 18, 19, 20 | 3bitr4g 223 |
. . . . . . . . . . 11
|
| 22 | 21 | adantr 276 |
. . . . . . . . . 10
|
| 23 | simpll 527 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | cbvraldva2 2746 |
. . . . . . . . 9
|
| 25 | 24 | ancoms 268 |
. . . . . . . 8
|
| 26 | 25 | adantll 476 |
. . . . . . 7
|
| 27 | simpll 527 |
. . . . . . 7
| |
| 28 | 26, 27 | cbvraldva2 2746 |
. . . . . 6
|
| 29 | 28 | cbvexdva 1954 |
. . . . 5
|
| 30 | 29 | cbvalv 1942 |
. . . 4
|
| 31 | acexmid.choice |
. . . 4
| |
| 32 | 30, 31 | mpgbir 1477 |
. . 3
|
| 33 | 32 | spi 1560 |
. 2
|
| 34 | 33 | acexmidlemv 5952 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 df-suc 4423 df-iota 5238 df-riota 5909 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |