| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmid | Unicode version | ||
| Description: The axiom of choice
implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath
Proof Explorer (version of 3-Aug-2019). In particular, note that the
choice function Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7273 and df-exmid 4228 syntaxes, see exmidac 7276. (Contributed by Jim Kingdon, 4-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmid.choice |
|
| Ref | Expression |
|---|---|
| acexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . . . . . . . . . . . . 14
| |
| 2 | 1 | sb8eu 2058 |
. . . . . . . . . . . . 13
|
| 3 | eleq12 2261 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 4 | 3 | ancoms 268 |
. . . . . . . . . . . . . . . . . . 19
|
| 5 | 4 | 3adant3 1019 |
. . . . . . . . . . . . . . . . . 18
|
| 6 | eleq12 2261 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 7 | 6 | 3ad2antl1 1161 |
. . . . . . . . . . . . . . . . . . . 20
|
| 8 | eleq12 2261 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 9 | 8 | 3ad2antl2 1162 |
. . . . . . . . . . . . . . . . . . . 20
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . . . . . . . . . . . . 19
|
| 11 | simpl3 1004 |
. . . . . . . . . . . . . . . . . . 19
| |
| 12 | 10, 11 | cbvrexdva2 2737 |
. . . . . . . . . . . . . . . . . 18
|
| 13 | 5, 12 | anbi12d 473 |
. . . . . . . . . . . . . . . . 17
|
| 14 | 13 | 3com23 1211 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | 3expa 1205 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | sbiedv 1803 |
. . . . . . . . . . . . . 14
|
| 17 | 16 | eubidv 2053 |
. . . . . . . . . . . . 13
|
| 18 | 2, 17 | bitrid 192 |
. . . . . . . . . . . 12
|
| 19 | df-reu 2482 |
. . . . . . . . . . . 12
| |
| 20 | df-reu 2482 |
. . . . . . . . . . . 12
| |
| 21 | 18, 19, 20 | 3bitr4g 223 |
. . . . . . . . . . 11
|
| 22 | 21 | adantr 276 |
. . . . . . . . . 10
|
| 23 | simpll 527 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | cbvraldva2 2736 |
. . . . . . . . 9
|
| 25 | 24 | ancoms 268 |
. . . . . . . 8
|
| 26 | 25 | adantll 476 |
. . . . . . 7
|
| 27 | simpll 527 |
. . . . . . 7
| |
| 28 | 26, 27 | cbvraldva2 2736 |
. . . . . 6
|
| 29 | 28 | cbvexdva 1944 |
. . . . 5
|
| 30 | 29 | cbvalv 1932 |
. . . 4
|
| 31 | acexmid.choice |
. . . 4
| |
| 32 | 30, 31 | mpgbir 1467 |
. . 3
|
| 33 | 32 | spi 1550 |
. 2
|
| 34 | 33 | acexmidlemv 5920 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iota 5219 df-riota 5877 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |