Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmid | Unicode version |
Description: The axiom of choice
implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function provides a value when is inhabited (as opposed to nonempty as in some statements of the axiom of choice). Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7183 and df-exmid 4181 syntaxes, see exmidac 7186. (Contributed by Jim Kingdon, 4-Aug-2019.) |
Ref | Expression |
---|---|
acexmid.choice |
Ref | Expression |
---|---|
acexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . . . . . . . . . . . 14 | |
2 | 1 | sb8eu 2032 | . . . . . . . . . . . . 13 |
3 | eleq12 2235 | . . . . . . . . . . . . . . . . . . . 20 | |
4 | 3 | ancoms 266 | . . . . . . . . . . . . . . . . . . 19 |
5 | 4 | 3adant3 1012 | . . . . . . . . . . . . . . . . . 18 |
6 | eleq12 2235 | . . . . . . . . . . . . . . . . . . . . 21 | |
7 | 6 | 3ad2antl1 1154 | . . . . . . . . . . . . . . . . . . . 20 |
8 | eleq12 2235 | . . . . . . . . . . . . . . . . . . . . 21 | |
9 | 8 | 3ad2antl2 1155 | . . . . . . . . . . . . . . . . . . . 20 |
10 | 7, 9 | anbi12d 470 | . . . . . . . . . . . . . . . . . . 19 |
11 | simpl3 997 | . . . . . . . . . . . . . . . . . . 19 | |
12 | 10, 11 | cbvrexdva2 2704 | . . . . . . . . . . . . . . . . . 18 |
13 | 5, 12 | anbi12d 470 | . . . . . . . . . . . . . . . . 17 |
14 | 13 | 3com23 1204 | . . . . . . . . . . . . . . . 16 |
15 | 14 | 3expa 1198 | . . . . . . . . . . . . . . 15 |
16 | 15 | sbiedv 1782 | . . . . . . . . . . . . . 14 |
17 | 16 | eubidv 2027 | . . . . . . . . . . . . 13 |
18 | 2, 17 | syl5bb 191 | . . . . . . . . . . . 12 |
19 | df-reu 2455 | . . . . . . . . . . . 12 | |
20 | df-reu 2455 | . . . . . . . . . . . 12 | |
21 | 18, 19, 20 | 3bitr4g 222 | . . . . . . . . . . 11 |
22 | 21 | adantr 274 | . . . . . . . . . 10 |
23 | simpll 524 | . . . . . . . . . 10 | |
24 | 22, 23 | cbvraldva2 2703 | . . . . . . . . 9 |
25 | 24 | ancoms 266 | . . . . . . . 8 |
26 | 25 | adantll 473 | . . . . . . 7 |
27 | simpll 524 | . . . . . . 7 | |
28 | 26, 27 | cbvraldva2 2703 | . . . . . 6 |
29 | 28 | cbvexdva 1922 | . . . . 5 |
30 | 29 | cbvalv 1910 | . . . 4 |
31 | acexmid.choice | . . . 4 | |
32 | 30, 31 | mpgbir 1446 | . . 3 |
33 | 32 | spi 1529 | . 2 |
34 | 33 | acexmidlemv 5851 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 703 w3a 973 wal 1346 wex 1485 wsb 1755 weu 2019 wral 2448 wrex 2449 wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-iota 5160 df-riota 5809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |