| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmid | Unicode version | ||
| Description: The axiom of choice
implies excluded middle. Theorem 1.3 in [Bauer]
p. 483.
The statement of the axiom of choice given here is ac2 in the Metamath
Proof Explorer (version of 3-Aug-2019). In particular, note that the
choice function Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967). For this theorem stated using the df-ac 7376 and df-exmid 4278 syntaxes, see exmidac 7379. (Contributed by Jim Kingdon, 4-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmid.choice |
|
| Ref | Expression |
|---|---|
| acexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. . . . . . . . . . . . . 14
| |
| 2 | 1 | sb8eu 2090 |
. . . . . . . . . . . . 13
|
| 3 | eleq12 2294 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 4 | 3 | ancoms 268 |
. . . . . . . . . . . . . . . . . . 19
|
| 5 | 4 | 3adant3 1041 |
. . . . . . . . . . . . . . . . . 18
|
| 6 | eleq12 2294 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 7 | 6 | 3ad2antl1 1183 |
. . . . . . . . . . . . . . . . . . . 20
|
| 8 | eleq12 2294 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 9 | 8 | 3ad2antl2 1184 |
. . . . . . . . . . . . . . . . . . . 20
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . . . . . . . . . . . . 19
|
| 11 | simpl3 1026 |
. . . . . . . . . . . . . . . . . . 19
| |
| 12 | 10, 11 | cbvrexdva2 2773 |
. . . . . . . . . . . . . . . . . 18
|
| 13 | 5, 12 | anbi12d 473 |
. . . . . . . . . . . . . . . . 17
|
| 14 | 13 | 3com23 1233 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | 3expa 1227 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | sbiedv 1835 |
. . . . . . . . . . . . . 14
|
| 17 | 16 | eubidv 2085 |
. . . . . . . . . . . . 13
|
| 18 | 2, 17 | bitrid 192 |
. . . . . . . . . . . 12
|
| 19 | df-reu 2515 |
. . . . . . . . . . . 12
| |
| 20 | df-reu 2515 |
. . . . . . . . . . . 12
| |
| 21 | 18, 19, 20 | 3bitr4g 223 |
. . . . . . . . . . 11
|
| 22 | 21 | adantr 276 |
. . . . . . . . . 10
|
| 23 | simpll 527 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | cbvraldva2 2772 |
. . . . . . . . 9
|
| 25 | 24 | ancoms 268 |
. . . . . . . 8
|
| 26 | 25 | adantll 476 |
. . . . . . 7
|
| 27 | simpll 527 |
. . . . . . 7
| |
| 28 | 26, 27 | cbvraldva2 2772 |
. . . . . 6
|
| 29 | 28 | cbvexdva 1976 |
. . . . 5
|
| 30 | 29 | cbvalv 1964 |
. . . 4
|
| 31 | acexmid.choice |
. . . 4
| |
| 32 | 30, 31 | mpgbir 1499 |
. . 3
|
| 33 | 32 | spi 1582 |
. 2
|
| 34 | 33 | acexmidlemv 5992 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 df-suc 4459 df-iota 5274 df-riota 5947 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |