ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbiedv GIF version

Theorem sbiedv 1789
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1791). (Contributed by NM, 7-Jan-2017.)
Hypothesis
Ref Expression
sbiedv.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
sbiedv (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem sbiedv
StepHypRef Expression
1 nfv 1528 . 2 𝑥𝜑
2 nfvd 1529 . 2 (𝜑 → Ⅎ𝑥𝜒)
3 sbiedv.1 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
43ex 115 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
51, 2, 4sbied 1788 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  acexmid  5873
  Copyright terms: Public domain W3C validator