Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbiedv | GIF version |
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1768). (Contributed by NM, 7-Jan-2017.) |
Ref | Expression |
---|---|
sbiedv.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbiedv | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1505 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfvd 1506 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
3 | sbiedv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
4 | 3 | ex 114 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
5 | 1, 2, 4 | sbied 1765 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 [wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 |
This theorem is referenced by: acexmid 5813 |
Copyright terms: Public domain | W3C validator |