| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbiedv | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1814). (Contributed by NM, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| sbiedv.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbiedv | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfvd 1552 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | sbiedv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| 5 | 1, 2, 4 | sbied 1811 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: acexmid 5943 |
| Copyright terms: Public domain | W3C validator |