ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimfv Unicode version

Theorem spimfv 1687
Description: Specialization, using implicit substitution. Version of spim 1726 with a disjoint variable condition. See spimv 1799 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
spimfv.nf  |-  F/ x ps
spimfv.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimfv  |-  ( A. x ph  ->  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem spimfv
StepHypRef Expression
1 spimfv.nf . 2  |-  F/ x ps
2 a9ev 1685 . . 3  |-  E. x  x  =  y
3 spimfv.1 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
42, 3eximii 1590 . 2  |-  E. x
( ph  ->  ps )
51, 419.36i 1660 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  chvarfv  1688
  Copyright terms: Public domain W3C validator