ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chvarfv Unicode version

Theorem chvarfv 1688
Description: Implicit substitution of  y for  x into a theorem. Version of chvar 1745 with a disjoint variable condition. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
chvarfv.nf  |-  F/ x ps
chvarfv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
chvarfv.2  |-  ph
Assertion
Ref Expression
chvarfv  |-  ps
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem chvarfv
StepHypRef Expression
1 chvarfv.nf . . 3  |-  F/ x ps
2 chvarfv.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32biimpd 143 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
41, 3spimfv 1687 . 2  |-  ( A. x ph  ->  ps )
5 chvarfv.2 . 2  |-  ph
64, 5mpg 1439 1  |-  ps
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  fproddivapf  11572  fprodsplitf  11573
  Copyright terms: Public domain W3C validator