| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spimfv | GIF version | ||
| Description: Specialization, using implicit substitution. Version of spim 1760 with a disjoint variable condition. See spimv 1833 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| spimfv.nf | ⊢ Ⅎ𝑥𝜓 |
| spimfv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimfv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimfv.nf | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | a9ev 1719 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 3 | spimfv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | eximii 1624 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) |
| 5 | 1, 4 | 19.36i 1694 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: chvarfv 1722 |
| Copyright terms: Public domain | W3C validator |