ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimfv GIF version

Theorem spimfv 1721
Description: Specialization, using implicit substitution. Version of spim 1760 with a disjoint variable condition. See spimv 1833 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
spimfv.nf 𝑥𝜓
spimfv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimfv (∀𝑥𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimfv
StepHypRef Expression
1 spimfv.nf . 2 𝑥𝜓
2 a9ev 1719 . . 3 𝑥 𝑥 = 𝑦
3 spimfv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3eximii 1624 . 2 𝑥(𝜑𝜓)
51, 419.36i 1694 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1370  wnf 1482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483
This theorem is referenced by:  chvarfv  1722
  Copyright terms: Public domain W3C validator