ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimfv GIF version

Theorem spimfv 1699
Description: Specialization, using implicit substitution. Version of spim 1738 with a disjoint variable condition. See spimv 1811 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
spimfv.nf 𝑥𝜓
spimfv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimfv (∀𝑥𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimfv
StepHypRef Expression
1 spimfv.nf . 2 𝑥𝜓
2 a9ev 1697 . . 3 𝑥 𝑥 = 𝑦
3 spimfv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3eximii 1602 . 2 𝑥(𝜑𝜓)
51, 419.36i 1672 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  chvarfv  1700
  Copyright terms: Public domain W3C validator