![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spimfv | GIF version |
Description: Specialization, using implicit substitution. Version of spim 1749 with a disjoint variable condition. See spimv 1822 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
spimfv.nf | ⊢ Ⅎ𝑥𝜓 |
spimfv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimfv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spimfv.nf | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | a9ev 1708 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
3 | spimfv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | eximii 1613 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) |
5 | 1, 4 | 19.36i 1683 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: chvarfv 1711 |
Copyright terms: Public domain | W3C validator |