| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax9o | Unicode version | ||
| Description: An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| ax9o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1718 |
. 2
| |
| 2 | 19.29r 1643 |
. . 3
| |
| 3 | hba1 1562 |
. . . . 5
| |
| 4 | pm3.35 347 |
. . . . 5
| |
| 5 | 3, 4 | exlimih 1615 |
. . . 4
|
| 6 | ax-4 1532 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 2, 7 | syl 14 |
. 2
|
| 9 | 1, 8 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-i9 1552 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equsalh 1748 spimth 1757 spimh 1759 |
| Copyright terms: Public domain | W3C validator |