| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax9o | Unicode version | ||
| Description: An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| ax9o | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | a9e 1710 | 
. 2
 | |
| 2 | 19.29r 1635 | 
. . 3
 | |
| 3 | hba1 1554 | 
. . . . 5
 | |
| 4 | pm3.35 347 | 
. . . . 5
 | |
| 5 | 3, 4 | exlimih 1607 | 
. . . 4
 | 
| 6 | ax-4 1524 | 
. . . 4
 | |
| 7 | 5, 6 | syl 14 | 
. . 3
 | 
| 8 | 2, 7 | syl 14 | 
. 2
 | 
| 9 | 1, 8 | mpan 424 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: equsalh 1740 spimth 1749 spimh 1751 | 
| Copyright terms: Public domain | W3C validator |