Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spsbe | Unicode version |
Description: A specialization theorem, mostly the same as Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 29-Dec-2017.) |
Ref | Expression |
---|---|
spsbe |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1754 | . 2 | |
2 | simpr 109 | . . 3 | |
3 | 2 | eximi 1588 | . 2 |
4 | 1, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbft 1836 |
Copyright terms: Public domain | W3C validator |