ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbe Unicode version

Theorem spsbe 1865
Description: A specialization theorem, mostly the same as Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 29-Dec-2017.)
Assertion
Ref Expression
spsbe  |-  ( [ y  /  x ] ph  ->  E. x ph )

Proof of Theorem spsbe
StepHypRef Expression
1 sb1 1789 . 2  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
2 simpr 110 . . 3  |-  ( ( x  =  y  /\  ph )  ->  ph )
32eximi 1623 . 2  |-  ( E. x ( x  =  y  /\  ph )  ->  E. x ph )
41, 3syl 14 1  |-  ( [ y  /  x ] ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1515   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  sbft  1871
  Copyright terms: Public domain W3C validator