ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbe GIF version

Theorem spsbe 1830
Description: A specialization theorem, mostly the same as Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 29-Dec-2017.)
Assertion
Ref Expression
spsbe ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem spsbe
StepHypRef Expression
1 sb1 1754 . 2 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 simpr 109 . . 3 ((𝑥 = 𝑦𝜑) → 𝜑)
32eximi 1588 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
41, 3syl 14 1 ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sbft  1836
  Copyright terms: Public domain W3C validator